


Edexcel A-Level BIOLOGY

Biological Molecules

Carbohydrates 2

Time allowed **55 minutes**

MARK SCHEME

Question Number	Answer	Mark
1 (a)	 idea that less {food /eq} required to deliver energy requirement ; 	
	 (so) more likely to have extra food not respired / {extra/surplus} energy ; 	
	3. which could be laid down in body as fat / eq ;	(2)

Question	Answer	Mark
Number	Any two from	
1 (b)	Any two from:	
	1. ADP	
	2. Pi / inorganic phosphate	
	3. pyruvate / pyruvic acid / lactate	
	4. fatty acids	
	5. NAD / eq	
	6. acetyl CoA / eq	
	7. water ; ;	(2)

Question Number	Answer	Mark
1 (c)	 many {alpha / eq} glucose monomers ; 	
	2. joined by glycosidic bonds ;	
	3. detail of glycosidic bonds e.g. 1-4 ;	
	4. reference to side branches present / 1-6 glycosidic bonds ;	
		(3)

Question Number	Answer	Mark
1 (d)	 more gonadotropins ; {use / muscle uptake} of (excess) fatty acids ; respired to release (much) energy / increased fat metabolism ; idea of reduced requirement to replenish glycogen stores ; 	
		(3)

Question Number	Answer	Mark
1 (e)	 (slow twitch muscles) carry out aerobic respiration / full oxidation / eq ; 	
	2. which produces more ATP (than anaerobic) / eq ;	
	3. 'energy' not locked up in lactate / eq ;	
	4. idea that it takes longer for lactate levels to build up ;	(2)

Question Number	Answer	Mark
1 *(f)	QWC – Spelling of technical terms (<i>shown in italics</i>) must be correct and the answer must be organised in a logical sequence)	
	1. Ca ²⁺ leaks out of {cell / <i>cytoplasm / sarcoplasmic reticulum</i> } ;	
	2. idea of change in Ca ²⁺ binding to <i>troponin</i> ;	
	3. causes displacement of <i>tropomyosin</i> / eq ;	
	4. idea of change in number of <i>myosin</i> binding sites exposed ;	
	5. comment on <i>myosin</i> binding to <i>actin</i> ;	
	 (loss of Ca²⁺ from cell / cytoplasm) therefore force exerted by muscle is lower than expected 	
	OR (more Ca ²⁺ in cytoplasm) results in less ATP so less muscle contraction ;	(4)

Question Number	Answer			Mark
1 (g)			_	
	Process	Two nucleic acids involved in the process		
	Transcription of the ACE gene	DNA <u>&</u> mRNA ;		
	Production of ACE at a ribosome	Any two from: mRNA, tRNA, rRNA ;		(2)

Question Number	Answer	Mark
1 (h)	1. obtain a sample of cells / extract DNA (from cells) ;	
	2. reference to named enzyme ;	
	3. idea of how to increase amount of DNA ;	
	4. reference to electrophoresis ;	
	5. details of electrophoresis ;	
	6. use a {DNA / gene} probe ;	
	7. with a base sequence complementary to that on the {variant / eq};	
	8. idea of matching with known variant profile ;	(4)

Question Number	Answer	Mark
1 (i)	B ;	(1)

Question Number	Answer	Mark
1 (j)	 (higher metabolic rate) means more chemical reactions / eq ; more {energy released / ATP used} / eq ; 	
	3. (which) releases heat / eq ;	
	 keeps divers warmer / warm for longer / able to swim without a wetsuit / eq ; 	
		(3)

Question Number	Answer	Mark
1 (k)	 carbon dioxide due to {deforestation / land cleaning / burning fossil fuels / correct ref to respiration / eq}; methane from {rice fields / anaerobic bacterial action / ruminant fermentation / named ruminant}; 	
		(2)

Question Number	Answer	Mark
1 (I)	1. $1.4 \div 37 = ;$	
	2. 3.8 (%) ;	(2)
	Correct answer gains both 2 marks	(_)

Question Number	Answer	Mark
2(a)(i)	 idea that a monosaccharide consists of one {sugar / named sugar / eq} (unit) whereas a disaccharide consists of two (sugar units) ; idea that disaccharide has a glycosidic bond (whereas monosaccharide does not) ; 	
	3. general formula for a monosaccharide is $C_nH_{2n}O_n$ whereas formula for disaccharide is $C_nH_{2n-2}O_{n-1}$ / eq ;	(2)

Question Number	Answer	Mark
2(a)(ii)		
	 amylose is {straight chained / unbranched / eq} whereas amylopectin is branched ; amylose {coiled / eq} (whereas amylopectin is not) / eq ; 	
	 amylose has 1-4 (glycosidic) bonds whereas amylopectin has 1-4 and 1-6 (glycosidic) bonds ; 	(2)

Question Number	Answer	Mark
2(b)	 idea of carbohydrates providing a source of energy ; 	
	 if the {energy / carbohydrate / eq} input is greater than the {energy output / carbohydrate use / eq} (weight will be gained) / eq ; 	
	 idea of excess carbohydrate converted to fat ; 	(2)

Question Number	Answer	Mark
3 (a)	Any 3 of the following:	
5 (a)	1. consists of (a) glucose ;	
	2. (joined by 1,4 / 1,6) glycosidic bonds ;	
	3. branched structure / eq ;	
	4. idea of compact structure ;	
	Any 3 of the following:	
	 idea that it is {easily / rapidly / eq} hydrolysed ; 	
	 (leading to) more {glucose / eq} in a smaller space (in a cell)/ eq ; 	
	7. idea of low solubility ;	
	8. it does not diffuse out of cells /eq ;	
	9. it has no osmotic effect / eq ;	(4)

Question Number	Answer	Mark
3 (b)(i)	 increasing intensity {increases carbohydrate use / decreases fat use / eq} / eq ; 	
	 2. {low intensity exercise / intensity below {39 / 40} au ses more energy derived from fats / eq ; 	
	OR {high intensity exercise / intensity above {39 / 40} au} uses more energy derived from carbohydrates / eq ;	
	 at {39 / 40} au both sources of energy used equally / eq ; 	
	 credit correct manipulation of figures to compare energy usage ; 	(3)

Question Number	Answer	Mark
3(b)(ii)	 idea that this diet is suitable for {a high intensity / eq} event ; 	
	 credit suitable example of athletic event e.g. any endurance or power event ; 	
	 reference to more carbohydrate being used (than fat) above {39 / 40} a.u. / eq ; 	
	 reference to carbohydrate being stored as glycogen ; 	
	 idea of {maximum / more / lots of} glycogen (stored) ; 	
	 idea that breakdown of glycogen provides energy (for the event) ; 	(3)