


Edexcel A-Level BIOLOGY

Biological Molecules DNA & Protein Synthesis 1

Time allowed **56 minutes**

MARK SCHEME

Question Number	Answer	Additional Guidance	Mark
1(a)(i)	c C		(1)

Question Number	Answer	Additional Guidance	Mark
1(a)(ii)	G - A - U - U - C - A - C - G - U		(1)

Question Number			ļ	Answer	Additional Guidance	Mark
1(a)(iii)	c ³	1	4	2		(1)

Question Number	Answer	Additional Guidance	Mark
1(b)(i)	8		(1)
Question Number	Answer	Additional Guidance	Mark
1(b)(ii)	6		(1)

Question Number	Answer	Additional Guidance	Mark
1(c)	 DNA is {double stranded/ has a double helix} and RNA is {single stranded / does not have a double helix}; 	1. ACC T mixtures e.g. DNA double helix mRNA is single strand IGNORE hydrogen bonds	
	2. DNA has {thymine / T } while RNA has { uracil / U } ;	2.NOT thiamine, thyamine	
	3. DNA has deoxyribose while RNA has ribose ;		
	4. DNA is { larger / longer } than RNA / eq ;		
			(3)

Question Number	Answer	Additional Guidance	Mark
2(a)(i)	 as it is a greenhouse gas / eq ; idea of CO₂ leading to global warming ; 	2 ACCEPT description of effect of global warming	(2)

Question Number	Answer	Additional Guidance	Mark
* 2 (a)(ii)	*QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC Emphasis is on logical sequence	
	1. idea of using gene involved / eq ;	1 ACCEPT allele	
	2. reference to {restriction enzyme / endonuclease} / eq ;		
	 idea of same (restriction) enzyme used to cut open plasmid / eq ; 		
	4. reference to sticky ends ;		
	 detail of sticky ends e.g. complementary bases exposed ; 		
	6. (DNA) ligase used to bind useful gene to plasmid / eq ;	6 ACCEPT join for bind	
	7. by forming phosphodiester bonds / eq ;	7 ACCEPT description of a phosphodiester bond	
	8. idea of uptake of plasmid by bacterium ;		(6)

Question Number	Answer	Additional Guidance	Mark
2(b)	Correct answer gains both marks 1. (one gene contains) 580 000÷525 / 1104.76 base pairs ; 2. this is { 2210 / 2209.5 } bases ; OR 3. (genome is 580 000 x 2) = 1160 000 bases ; 4. (one gene is 1160 000 ÷ 525) = { 2210 / 2209.5} bases ;	Allow 1 mark: 1105 bases	
			(2)

Question Number	Answer	Additional Guidance	Mark
2(c)(i)	 deoxyribose in DNA AND ribose in RNA ; thymine in DNA AND uracil in RNA ; idea of enzymes being used are different e.g. DNA polymerase v. RNA polymerase ; 	2 ACCEPT T and U	
	4. 2 strands in DNA and 1 strand for RNA ;	3 ACCEPT DNA formed by DNA replication and RNA by transcription	
		4 ACCEPT double helix for 2 strands in DNA	(3)
Question Number	Answer	Additional Guidance	Mark
2 (c)(ii)	so it can be inserted into a bacterium / idea of less likely to degrade ;	ACCEPT: less likely to {mutate / break down }	(1)
		IGNORE: for storage unqualified	

Question Number	Answer	Additional Guidance	Mark
2 (d)	1. idea that product of a gene acts as an inhibitor ;	1 ACCEPT protein/polypeptide for product, and repressor for inhibitor	
	2. idea of inhibits next gene ;		
	 (if) 1st gene active, it inhibits 2nd gene so 3rd gene is active ; 	3 ACCEPT other logical sequence e.g. 2, 3 and then 1	
	4. Idea of gene is transcribed for a limited time ;		(3)

Question Number	Answer	Additional Guidance	Mark
2 (e)			
	 each step requires its own enzyme / eq ; 		
		1 ACCEPT appropriate ref to specificity e.g. enzyme 1 only acts on substrate 1	(4)
	2. to catalyse / control the step ;		
	 idea of the product of one step being the {substrate / eq} for the next step ; 	3 ACCEPT intermediates involved / reactant for substrate	
	 all steps must function for nitrogen to be converted to ammonia / eq ; 	4 ACCEPT nitrogen gas {reduced to /H ⁺ added to form} ammonia	
	5. idea of involvement of { cofactors / coenzymes / eq } ;	5 ACCEPT ATP / FAD / NAD	
Question Number	Answer	Additional Guidance	Mark

Number	Answer	Additional Guidance	Mark
2 (f)	1. idea of being non-pathogenic ;	1 ACCEPT attenuated, harmless	
	2. virus will { identify / bind to / eq } cancer cells / eq ;		
	3. virus destroys cancer cells / eq ;	3 ACCEPT replicates in cancer cells	
			(2)

Question Number	Answer	Additional Guidance	Mark
2 (g)	1. (small number of) healthy people / eq ;		
	 in case the treatment is dangerous / eq ; idea of establishing dosage ; 	2 ACCEPT ref to side effects, to make sure it is safe	(3)

Question Number		Answer			Additional Guidance	Mark
2 (h)		Г	٦			
		Stem	Ins			
	1.	{ any / eq } genes can be activated	most genes deactivated / eq	;	1 ACCEPT switched off	
	2.	{ un / less } differentiated	Differentiated	;	2 ACCEPT specialised for differentiated	
	3.	cell can continue to divide / no Hayflick limit	{ limited / no } cell division / Hayflick limited	;	unierentiated	
	4.	can give rise to various different cell types	cannot give rise to other types of cell	•		
	5.	No insulin made / insulin gene not active	Insulin made / insulin gene active	;		
	6.	Found in various locations / named location (other than pancreas)	Found in pancreas	;		
						(3)

Question Number	Answer	Additional Guidance	Mark
2(i)	radiation could lead to { cancer / mutation / eq } ;	ACCEPT: named example e.g. deletion	(1)

Question Number	Answer	Additional Guidance	Mark
3 (a)	idea that the (RNA) nucleotides attach to this	ACCEPT complementary to RNA nucelotides,	
	strand	codes for mRNA,	
	OR	{part of the DNA / antisense } strand that the	
	idea of {nucleotide / base } sequence that directs	mRNA is built along,	
	the synthesis of {complementary sequence /	NOT DNA nucleotides, plural strands	
	mRNA / eq} ;	·	(1)

Question Number		Answer	Mark
3 (b)(i)	D	have a sugar-phosphate chain ;	(1)

Question Number	Answer	Mark
3(b)(ii)	C semi-conservative replication is possible ;	(1)

Question Number	Answer	Mark
3 (b) (iii)	A 10% ;	(1)

Question Number		Answer									Additional Guidance	Mark			
3 (c)															
	U	G	А	А	А	G	с	G	G	G	с	υ			
	1. b	oth u	racils	corre	ect;										
	2. tł	ne res	st of	the se	equer	nce co	orrect	;							(2)

Question Number		ŀ	Answer	Additional Guidance	Mark	
3 (d)	Any	three from:		Must be clearly comparative for the mark IGNORE destination of the		
		replication	transcription	molecules		
	1	uses DNA nucleotides	uses RNA nucleotides / eq ;	1. ACCEPT thymine / T, uracil / U comparison, deoxyribose and ribose,		
	2	uses DNA polymerase / eq	does not use DNA polymerase / uses RNA polymerase ;	DNA and RNA bases 2. ACCEPT no ligase in transcription		
	3	reference to semi- conservative	not semi-conservative / eq ;			
	4	(copies) both DNA strands / eq	(copies) only {one strand / template / gene / eq} ;	4. ACCEPT whole DNA molecule unzipped for replication with only part for transcription ACCEPT all {DNA / genome}		
	5	makes DNA double helix / eq	Makes single strand mRNA / eq ;	copied in replication only part in transcription 5. NOT just produces DNA and mRNA		
				ACCEPT two {new strands of DNA / DNA molecules} compared to one mRNA (each time) ACCEPT if clear what is being		
				produced elsewhere in the response	(3)	