

Edexcel A-Level BIOLOGY

Biological Molecules DNA & Protein Synthesis 3

Time allowed **60 minutes**

MARK SCHEME

Question Number	Answer	Additional Guidance	Mark
1(a)	 mutation changes the sequence of bases / eq ; reference to stop code / idea of {insertion / deletion / eq} changes 	 CCEPT correct sequence of bases not there IGNORE changes one triplet / codon 	
	all triplets / frame shift / eq ;3. {transcription / translation} does	ACCEPT no start codon, no ribosome binding site	
	not occur / mRNA too short / protein too short / a different protein is made / eq ;	3. IGNOR change of an amino acid ACCEPT wrong protein made, different sequence of amino acids	(2)

Question Number	Answer	Additional Guidance	Mark
1 (b)	1. in the (cell surface) membrane ;	1. ACCEPT in phospholipid bilayer, apical membrane NOT on, attached, basal membrane	
	2. of mucus-producing cells / eq ;	 ACCEPT {epithelial/endothelial / lining} cells of appropriate named organ or system e.g. cells lining respiratory, digestive, reproductive 	(2)
Question Number	Answer	Additional Guidance	Mark
1 (c)	1. (change in) {number / type / sequence / eq} of		
	{amino acids / R groups};		

Question Number	Answer	Additional Guidance	Mark
1(d)		NOT chlorine penalise once	
	1. CFTR is a channel protein / eq ;	1. NOT carri	
	 idea that {fewer / no} chloride ions will be able to {enter / bind to / pass through / eq} the CFTR protein ; 	2. ACCEPT CFTR has a specific shape for chloride ions ACCEPT other ions can pass through	
	3. idea that fewer chloride ions will leave the cell ;		(2)

Question Number	Answer	Additional Guidance	Mark
1(e)	 less {chloride ions / water} in mucus / eq ; idea that mucus is different e.g. thicker, stickier ; in the {respiratory system / lungs / digestive system / pancreas / reproductive system / oviducts / fallopian tubes / cervix / sperm duct / vas deferens / eq } ; 		
	 credit correct reference to a consequence of thicker mucus ; 	E.g. less ventilation, enzyme release, absorption of nutrients, more chest infections, reduced fertility, etc	(2)
Question Number	Answer	Additional Guidance	Mark
1(f)	 by {enzymes / proteases} ; by hydrolysis / eq ; 		
	3. of peptide bonds ;		(2)

Question Number	Answer	Additional Guidance	Mark
2 (a) (i)	В;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (a) (ii)	В;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (a) (iii)	C ;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (b) (i)	C ;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (b) (ii)	D ;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (c)	nucleus ;	ACCEPT chloroplast, mitochondria	(1) clerical

Question Number	Answer	Additional Guidance	Mark
2 (d) (i)	 Advantage any one from: prevent child dying late in pregnancy / eq idea of less stress for parents / eq parents can prepare for child { with / without } achondroplasia / eq idea of making an informed choice ; Disadvantage any one from: risk of miscarriage of healthy child / eq 	 CCEPT may choose termination CCEPT risk of spontaneous abortion 	
	 idea of more stress for parents / eq cost / eq 		
	8. risk of false { negatives / positives } / eq ;		(2) p

Question Number	Answer	Additional Guidance	Mark
2 (d) (ii)	1. genoty of parents shown ;		
	2. alleles in the gametes shown ;		
	3. possible genotype of children shown AND corresponding phenotypes shown ;		
	4. (probabilit =) 1/4 / 25% / 1 in 4 / 0.25 ;	 NOT a ratio e.g. 1:4 ACCEPT 1/3, 33(.3)% , 1 in 3, 0.3 this assumes AA dies 	
			(4) p

Question Number	Answer	Additional Guidance	Mark
3 (a)		Accept reasonable phonetic spellings Not:	
	A = adenine C = cytosine G = guanine T = thymine ;	adenosine cysteine glycine thiamine, thyosine, tyrosine	(1)

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	 idea that each amino acid is coded for by three {nucleotides / bases}; 	Accept in context of RNA	
	 credit quoted example / idea that 12 {nucleotides / bases} code for 4 amino acids ; 	AAT / AAC = leucine, CAG = valine, TTT = lysine	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	 idea that each {triplet is discrete / each base is only used once in a triplet / eq } ; idea that AAT + AAC + CAG + TTT gives 4 (distinct) {triplets / codes} ; 	Accept a specific example eg the first T can only be used in code for first leucine Accept a description of how the code could be read if overlapping	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(iii)	 idea that more than one code can be used for a {particular amino acid/ stop code} ; AAT and AAC code for leucine ; 	Accept more codes than are needed to code for all the amino acids (and stop code)	(2)
Question	Answer	Additional Guidance	Mark

Number	Allswei	Additional Guidance	IVIAI K
3 (c)			
	В;		(1)

Question Number	Answer	Additional Guidance	Mark
3 *(d)	QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC emphasis is logical sequence NB The mps do not have to be given in this order necessarily	
	1. reference to mRNA with sequence UUA UUG GUC AAA ;		
	2. idea that ribosome is involved ;		
	 idea that each tRNA molecules is attached to one (specific) amino acid ; 	Not tRNA carries amino acids	
	 credit example of tRNA anticodon with specific amino acid 	AAU /AAC = leucine, CAG = valine, UUU = lysine	
	 reference to anticodons on tRNA {bind / link to / line up against / eq} codons on mRNA ; 	Ignore complementary	
	6. credit a specific example (from this DNA);	eg UUA codon and AAU anticodon	
	 idea of hydrogen bonds between bases (of tRNA and mRNA) ; 	Accept between codon and anticodon	
	 reference to formation of peptide { bonds / links} between (adjacent) amino acids ; 		(5)

Question Number	Answer	Additional Guidance	Mark
4(a)(i)	{Met Gly IIe} / {methionine glycine isoleucine} ;	Not other abbreviations	(1)

Question Number	Answer	Additional Guidance	Mark
4(a)(ii)	idea that each {triplet is discrete / base is only used once in a triplet / eq} ;	Accept a description of how the code could be read if overlapping	(1)

Question Number	Answer	Additional Guidance	Mark
4(b)(i)		Accept codons	
	1. idea that each amino acid needs a code ;		
	 idea that {using three bases give enough codes / using less bases does not give enough codes}; 		
	 idea of three bases means there can be 64 {triplets / codes / combinations / eq}; 		(2)

Question Number	Answer	Additional Guidance	Mark
4(b)(ii)	 idea that {effects of mutations are reduced / the amino acid may not be altered}; 	1. Accep description of effect Accept from a description of a specific example	
	 reference to the third base (being the one that can be changed with no effect) ; 	 Accept always results in same amino acid Not similar amino acid 2 NB If mp 2 is awarded it will usually incorporate mp 1 as well = 2 marks 	
	 no effect on (resulting) {polypeptide / protein} / eq ; 		(2)
Question Number	Answer	Additional Guidance	Mark
4(c)	1. reference to (TAA, TAG and TGA as) stop codons ;	1. No codes, triplets	
	 occur at the end of the gene (on the DNA) / eq ; 		
	3. reference to transcribed as mRNA / eq ;		
	4. as AUU, AUC and ACU ;		
	5. idea that they are recognised by ribosome ;		
	 idea that they signal the end of the polypeptide (chain) ; 	6. Accep stops the synthesis of the polypeptide / the polypeptide is finished	
	7. reference to (during) translation ;		(4)

Question Number	Answer	Additional Guidance	Mark
4(d)		Accept mp 1 and 2 from correctly drawn and labelled diagram	
	1. ref to peptide {bond / link} ;		
	 between (amino group / NH₃ / NH₄⁺} and {carboxyl group / COOH / COO⁻}; 	2. N formulae must be correct if only these are given	
	3. ref to condensation (reaction) ;		
	 idea of role of {tRNA / ribosome / enzymes / correctly named enzyme} in joining 	4. Accep e.g. hold the amino acids next to each	
	amino acids together ;	other, ribosome contains enzyme	(3)