

Edexcel A-Level BIOLOGY

Biological Molecules DNA & Protein Synthesis 5

Time allowed **59 minutes**

MARK SCHEME

DNA & Protein Synthesis

Question Number	Answer	Mark
1	1. (double) helix ;	
	2. deoxyribose ;	
	3. phosphate / phosphate group;	
	 phosphodiester / phospho(di)ester / covalent ; 	
	5. thymine ;	
	6. guanine ;	
	7. hydrogen ;	
	8. sixteen / 16 ;	(8)

DNA & Protein Synthesis

Question Number	Answer	Mark
2(a)(i)	C ;	
		(1)

Question	Answer	Mark
Number		
2 (a)(ii)		
	В;	
		(1)

Question	Answer	Mark
Number		
2(a) (iii)		
	Α;	(1)

Question Number	Answer	Mark
2 (b)	 idea of sequence of {bases / nucleotides} on DNA determines sequence on (pre-) mRNA ; 	
	 reference to complementary base pairing / stated example e.g. AU / CG / GC / TA (DNA: mRNA); 	
	 reference to formation of bonds by condensation reaction ; 	
	 phosphodiester {bonds / links} ; 	
	5. reference to RNA-polymerase ;	(3)

Question Number	Answer	Mark
2(c)(i)	 reference to {start / stop / nonsense} (codon) ; start (codon) needed to begin {polypeptide synthesis / eq} / {stop / nonsense} (codon) needed to end {polypeptide synthesis /eq } / eq ; 	(2)

Question Number	Answer	Mark
2(c)(ii)	 reference to {difference / variations / eq } of {exons / mRNA}; 	
	 reference to different {primary structure / sequence of amino acids} ; 	
	 reference to {secondary / tertiary } structure of proteins depends on primary {structure / sequence} / eq ; 	
	4. due to {change in / different} bonds ;	
	5. {hydrogen / ionic / disulphide} bonds ;	
	6. reference to different 3D shape / eq ;	max (3)

DNA & Protein Synthesis

Question Number	Answer	Mark
3 (a)	1. rhodopsin / iodopsin ;	
	Any one from:	
	2. broken down by light /	
	/ generates {action potentials / nerve impulses} /	
		max
	/ appropriate reference to {black and white / monochromatic / colour / trichromatic} vision ;	(2)

Question Number	Answer	Mark
3 (b)	1. sequencing of human DNA / eq ;	
	 {provides knowledge / eq} of human genetics / eq ; 	(2)

Question Number	Answer	Mark
3 (c)	1. lifestyle / environmental factors / eq ;	
	<pre>2. such as {carcinogens / eq} ;</pre>	
	such as {diet / obesity / inactivity} / eq ;	
	4. such as infections / eq ;	max
	5. genes may make it more likely / eq ;	(3)

Question Number	Answer	Mark
3(d)	 gene {needs to be switched on / expressed / eq}; 	
	2. by transcription factors / eq ;	
	in order to produce {mRNA / protein / CFTR} ;	may
	 (transcription factors) might not be present / eq ; 	(3)

Question Number	Answer	Mark
*3(e) QWC	(QWC - Spelling of technical terms <i>(shown in italics)</i> must be correct and the answer must be organised in a logical sequence)	
	1. triplet code / eq ;	
	2. represents amino acid (sequence) / eq ;	
	3. (mRNA) binds to ribosome / eq ;	
	 reference to {anticodon / codon} ; 	
	 tRNA decodes mRNA / provides correct amino acid / eq ; 	
	6. idea of two tRNA sites in the ribosome ;	
	7. two amino acids brought together / eq ;	
	8. joined with peptide bond / eq ;	
	9. reference to peptidyl transferase ;	
	10. idea that sections of DNA are {templates for / transcribed into} RNA ;	max (6)

Question Number	Answer	Mark
3(f)	 bonds to DNA / eq ; idea of sequence of bases recognised ; 	
	3. (sequence of bases) has unique shape / eq ;4. idea of bonding in DNA recognised ;	max (2)

Question Number	Answer	Mark
3 (g)	1. accumulation of small mutations / eq ;	
	2. changes existing genes / eq ;	
	3. idea of gene duplication and one mutates ;	
	 which allows mutation without losing function ; 	
	 (subfunctionalism) separates functions into separate genes / eq ; 	
	6. (retroposition) produces DNA {without introns/ from mRNA} / eq ;	
	 idea of (frameshift) reads genetic code from new starting point ; 	
	 idea that junk DNA can become an active gene ; 	max (5)

Question Number	Answer	Mark
3(h)	1. causes inflammation / eq ;	
	2. atheroma can lead to atherosclerosis / eq ;	max (2)

Question Number	Answer	Mark
3(i)	1. idea of non-overlapping code ;	
	 reference to {start codon / there is a frame / RNA polymerase binding site} / eq ; 	
	only one {template / eq} strand / eq ;	
	 reference to direction of reading of strand e.g. 5'-3'; 	max (2)

Question Number	Answer	Mark
3(j)	1. selective advantage / eq ;	
	2. (characteristic) passed to more offspring / eq ;	
	3. increased frequency of allele in population / eq ;	
	4. reference to speciation ;	max (3)