
L6 Further Mathematics November Test

Part one
Questions

Q1.
 
f(z) = z3 −8z2 + pz − 24
where p is a real constant.
Given that the equation f(z) = 0 has distinct roots

(a)  solve completely the equation f(z) = 0
(6)
(b)  Hence find the value of p.
(2)
 
(Total for question = 8 marks)
 


Q2.
 

(a)  Find M–1 giving each element in exact form.
(2)
(b)  Solve the simultaneous equations
2x + y – 3z = –4
4x – 2y + z = 9
3x + 5y – 2z = 5
(2)
(c)  Interpret the answer to part (b) geometrically.
(1)
 
(Total for question = 5 marks)
 
Q3.
 
Given that 4 and 2i − 3 are roots of the equation
x3 + ax2 + bx − 52 = 0
where a and b are real constants,
(a)   write down the third root of the equation,
(1)
(b)   find the value of a and the value of b.
(5)
 
(Total for question = 6 marks)
 


Q4.
(a) Show, using the formulae for r and r2 , that


 (6r2 + 4r − 1) = n(n + 2)(2n + 1)
(5)


(b) Hence, or otherwise, find the value of     (6r2 + 4r − 1).
(2)
 
(Total 7 marks)


Q5.
 
The cubic equation
3x3 + x2 – 4x + 1 = 0
has roots 
Without solving the cubic equation,

(a)  determine the value of 
(3)
(b)  find a cubic equation that has roots                  giving your answer in the form

x3 + ax2 + bx + c = 0, where a, b and c are integers to be determined.
(3)
 
(Total for question = 6 marks)
[bookmark: _GoBack]Q6.
 

Given that M = (A + B)(2A − B),
(a) calculate the matrix M,
(6)
(b) find the matrix C such that MC = A.
(4)



(Total 10 marks)



Q7.
 

Find, in the form a + ib where a, b
(a)  z
(2)
(b)  z2
(2)
Given that z is a complex root of the quadratic equation x2 + px + q = 0, where p and q are real integers,
(c)  find the value of p and the value of q.
(3)
 
(Total for question = 7 marks)
 
   

Part one total marks: 49


Part two

Q8.
 
A system of three equations is defined by
kx + 3y – z = 3 
3x – y + z = –k
–16x – ky – kz = k
where k is a positive constant.
Given that there is no unique solution to all three equations,
(a)  show that k = 2
(2)
Using k = 2
(b)  determine whether the three equations are consistent, justifying your answer.
(3)
(c)  Interpret the answer to part (b) geometrically.
(1)
 
(Total for question = 6 marks)
 
Q9.
 
(a)  Using the formula for        write down, in terms of n only, an expression for 

(1)
(b)  Show that, for all integers n, where n > 0

where the values of the constants a, b and c are to be found.
(4)
 
(Total for question = 5 marks)










Q10.
 
A complex number z is given by
z = a + 2i
where a is a non-zero real number.
(a)  Find z2 + 2z in the form x + iy where x and y are real expressions in terms of a.
(4)
Given that z2 + 2z is real,
(b)  find the value of a.
(1)
Using this value for a,
(c)  find the values of the modulus and argument of z, giving the argument in radians, and giving your answers to 3 significant figures.
(3)
(d)  Show the points P, Q and R, representing the complex numbers z, z2 and z2 + 2z respectively, on a single Argand diagram with origin O.
(3)
(e)  Describe fully the geometrical relationship between the line segments OP and QR.
(2)
 
(Total for question = 13 marks)
 



Mark Scheme

Q1.
 


 


Q2.
 


 


Q3.
 


 


Q4.

 

Q5.
 


 


Q6.
 



 


Q7.
 


 


Q8.
 



 
Q9.
 




Q10.
 

 

Total marks: 73
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