

Please write clearly in block capitals.	
Centre number	Candidate number
Currente	
Surname	
Forename(s)	
Candidate signature	/

AS CHEMISTRY

Paper 1: Inorganic and Physical Chemistry

Friday 27 May 2016

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

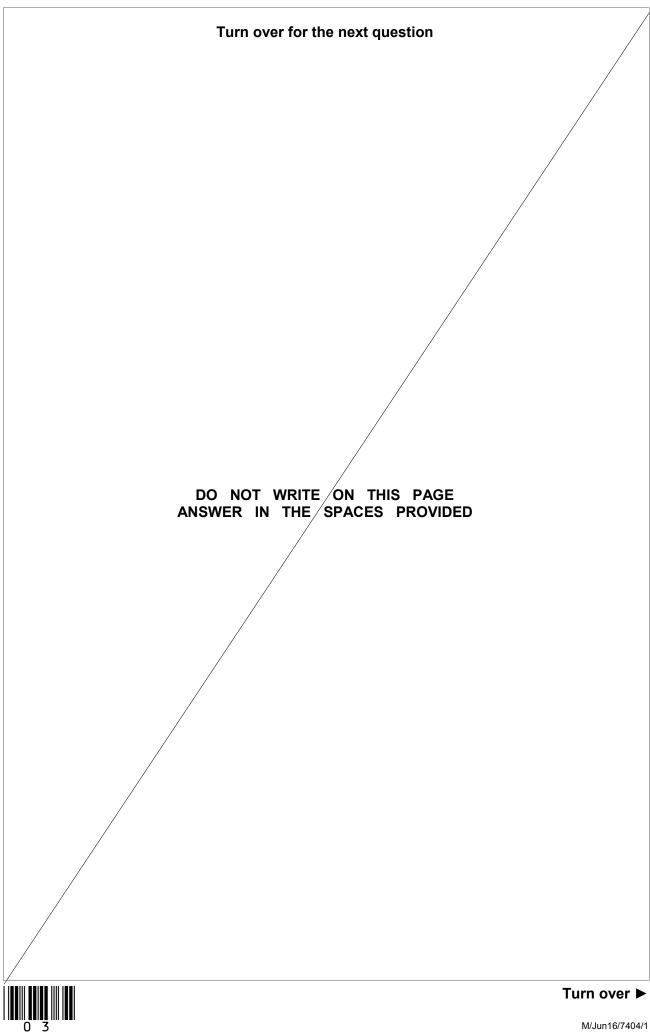
- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

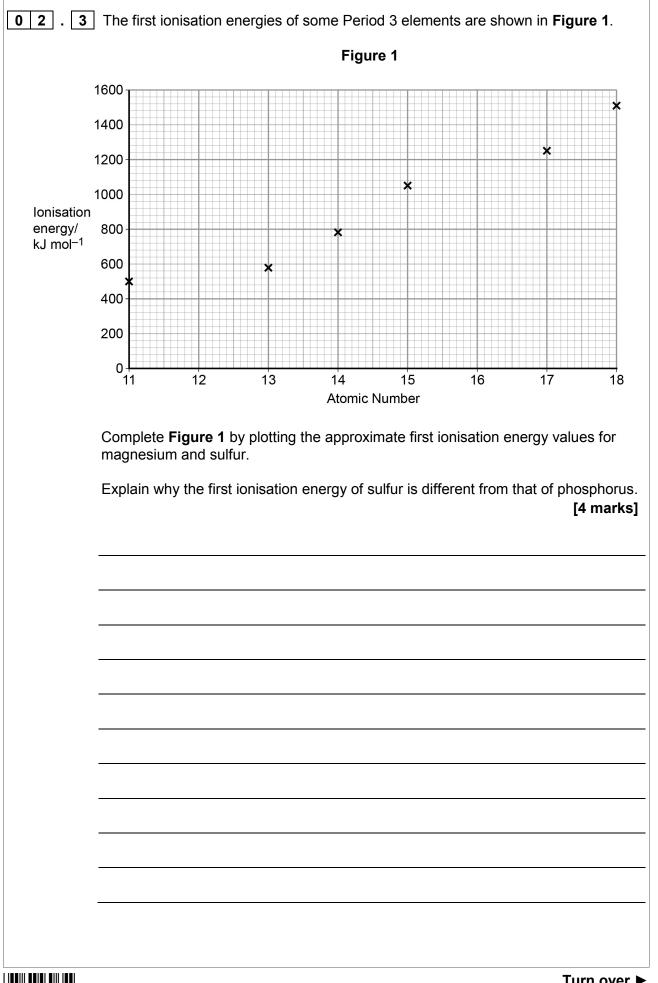
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 80.
- The Periodic Table/Data Sheet is provided as in insert.


Advice

• You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.



	Section A
	Answer all questions in this section.
1	This question is about electron configuration.
01.1	Give the full electron configuration of an Al atom and of a Cr^{3+} ion.
	[2 marks]
	Al atom
	Cr ³⁺ ion
	Deduce the formula of the ion that has a charge of 2+ with the same electron
	configuration as krypton. [1 mark]
	Deduce the formula of the compound that contains 2+ ions and 3- ions that both have the same electron configuration as argon.
	[1 mark]

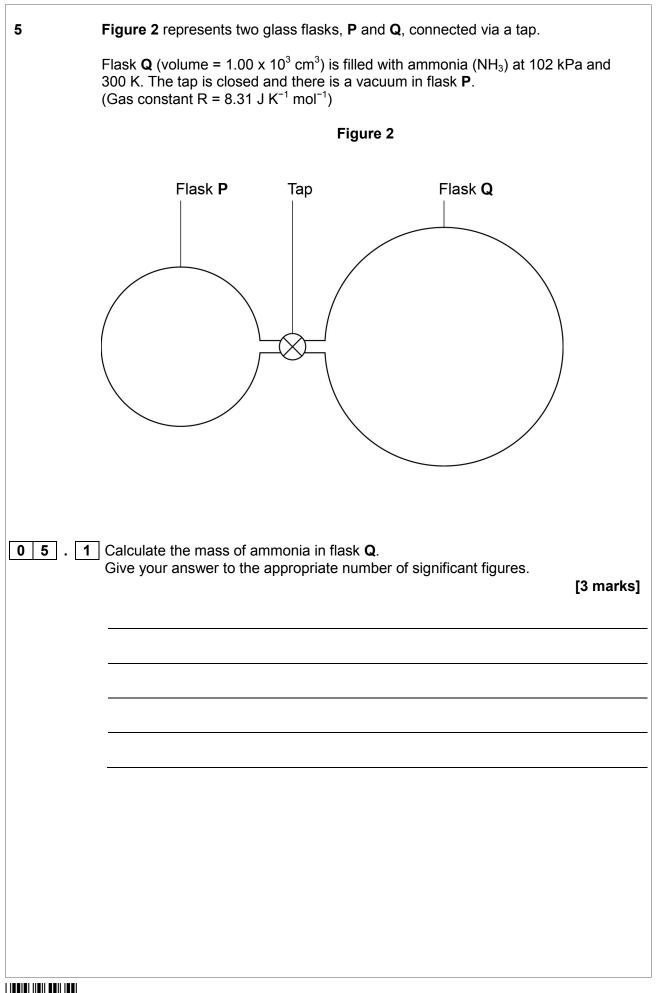
2	This question is about Period 3 of the Periodic Table.	
	Deduce which of Na ⁺ and Mg ²⁺ is the smaller ion.	
	Explain your answer.	10
		[2 marks]
	Smaller ion	
	Explanation	
02.2	Write an equation to represent the process that occurs when the first ic energy for sodium is measured.	nisation
		[1 mark]
0 4		M/JUN16/7404/1

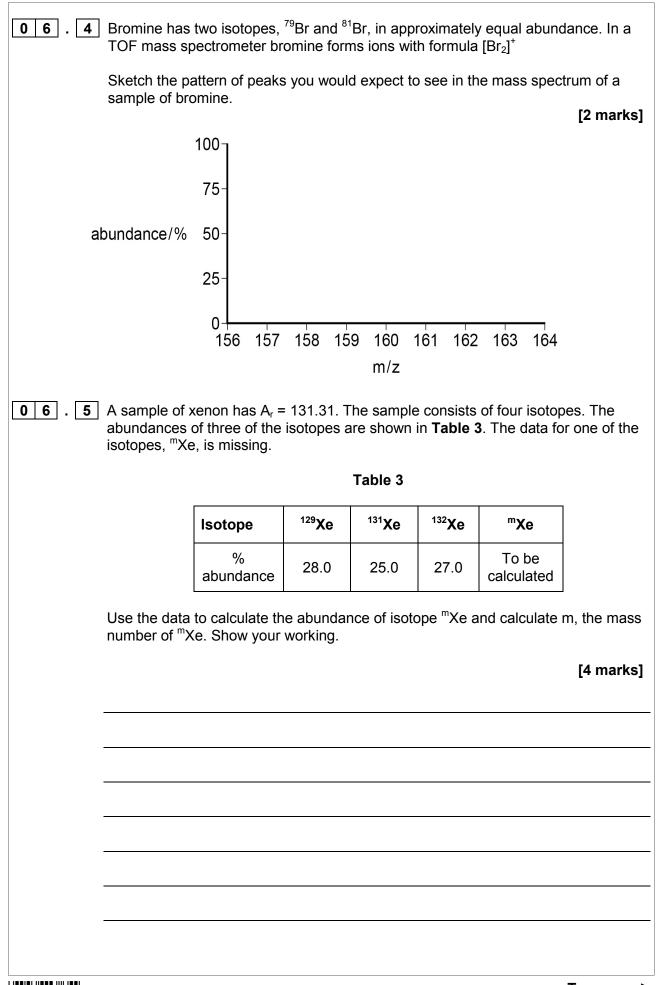
This question is about a white solid, $MHCO_3$, that dissolves in water and reacts with hydrochloric acid to give a salt. $MHCO_3 + HCl \rightarrow MCl + H_2O + CO_2$

A student was asked to design an experiment to determine a value for the M_r of MHCO₃. The student dissolved 1464 mg of MHCO₃ in water and made the solution up to 250 cm³.

	Table 1			
	Rough	1	2	3
Initial buret reading / cn		10.00	19.50	29.25
Final buretter reading / cn	e 10.00	19.50	29.25	38.90
Titre / cm ³	10.00	9.50	9.75	9.65
The	culate the amount, in en calculate the expe your answer to the	erimental value for t	he M_r of MHCO ₃ .	
The	en calculate the expe	erimental value for t	he M_r of MHCO ₃ .	ures.

3


03.3	The student identified use of the burette as the largest source of uncertainty in the experiment.
	Using the same apparatus, suggest how the procedure could be improved to reduce the percentage uncertainty in using the burette.
	Justify your suggested improvement. [2 marks]
	Suggestion
	Justification
03.4	Another student is required to make up 250 cm ³ of an aqueous solution that contains a known mass of MHCO ₃ . The student is provided with a sample bottle containing the MHCO ₃ .
	Describe the method, including apparatus and practical details, that the student should use to prepare the solution. [6 marks]
	More answer space is available on page 8


Do not write outside the box

4 Table 2 shows some data about the elements bromine and magnesium.				
Table 2				
	Element	Melting point / K	Boiling point / K	
	Bromine	266	332	
	Magnesium	923	1383	
04	different from that	re and bonding explain why th of magnesium. Suggest why re range compared to bromin	magnesium is a liquid over a much	

0 5 . 2 When the tap is oper decreases by 5 °C.	ened, ammonia passes into flask P . The temperature The final pressure in both flasks is 75.0 kPa. he, in cm ³ , of flask P .
Calculate the volum	ie, in cm ³ , of flask P. [3 marks]
Τι	urn over for the next question
	Turn over ►
	M/Jun16/7404/1

6	Explain how ions are accelerated, detected and have their abundance of	letermined
	Explain how ions are accelerated, detected and have their abundance of in a time of flight (TOF) mass spectrometer.	[3 marks]
06.2	Calculate the mass, in kg, of a single ${}^{52}Cr^+$ ion. Assume that the mass of a ${}^{52}Cr^+$ ion is the same as that of a ${}^{52}Cr$ atom.	
	(The Avogadro constant L = $6.022 \times 10^{23} \text{ mol}^{-1}$)	[1 mark]
-		
-		
06.3] In a TOF mass spectrometer the kinetic energy (KE) of a $^{52}\text{Cr}^{*}$ ion was 1.269 x 10^{-13}J	
	Calculate the velocity of the ion using the equation.	
	$KE = \frac{1}{2}mv^2$	
	$(m = \text{mass/kg and } v = \text{velocity/ms}^{-1})$	[2 marks]
		M/JUN16/7404/1

M/Jun16/7404/1

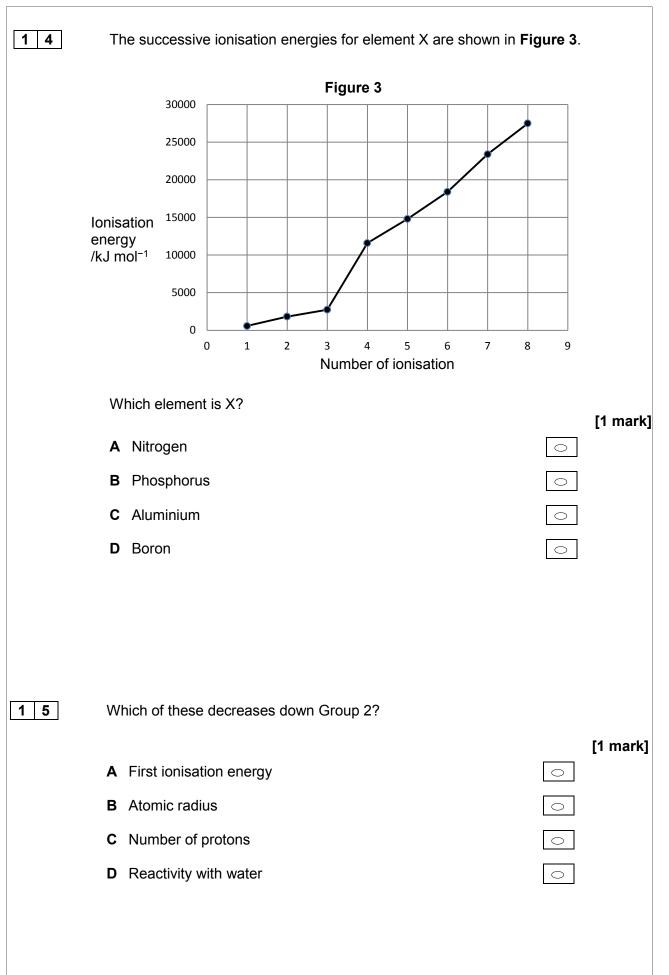
	[3 marks]
	Indicate the values of the bond angles.
	Include in your diagrams any lone pairs of electrons that influence the shape.
0 7 . 1	Draw diagrams to illustrate the shapes of NH_3 molecules and of $AlCl_3$ molecules.
	$NH_3 + AlCl_3 \rightarrow H_3NAlCl_3$
7	Ammonia reacts with aluminium chloride as shown by the equation:

07.2	Name the type of bond formed between N and Al in H_3NAlCl_3 and explain how this bond is formed.
	[2 marks]
	Type of bond
	Explanation
07.3	Explain how the value of the Cl-Al-Cl bond angle in AlCl ₃ changes, if at all, on formation of the compound H_3NAlCl_3
	[2 marks]
	Turn over for the next question
	Turn over ►
1 5	M/Jun16/7404/1

8	A student oxidised a solution of hydrochloric acid with a few drops of sodiu chlorate(I) solution. The reaction mixture effervesced and turned pale gree gas formed bleached universal indicator paper.	
08.1	Write a half-equation for the oxidation of chloride ions.	
		[1 mark]
08.2	Write a half-equation for the reduction of chlorate(I) ions to chlorine in acia conditions.	dic [1 mark]
08.3	Write an overall equation for the redox reaction of chlorate(I) ions with hydrochloric acid.	[1 mark]
08.4	A solution of sodium chlorate(I) was added to a colourless solution of pota iodide. Suggest what is observed.	assium
	Explain the reaction that leads to this observation.	3 marks]

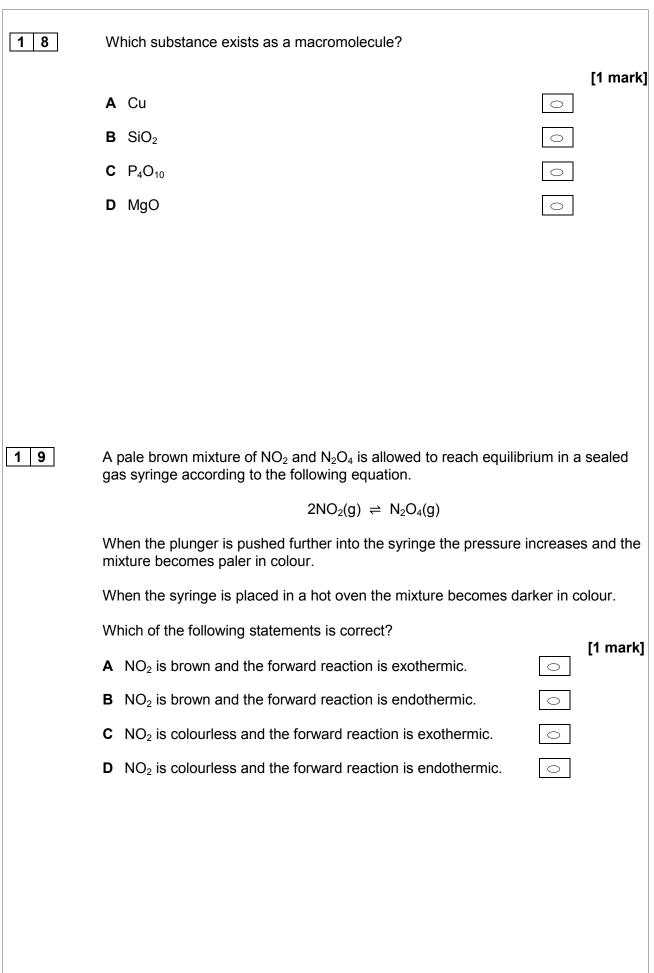
9

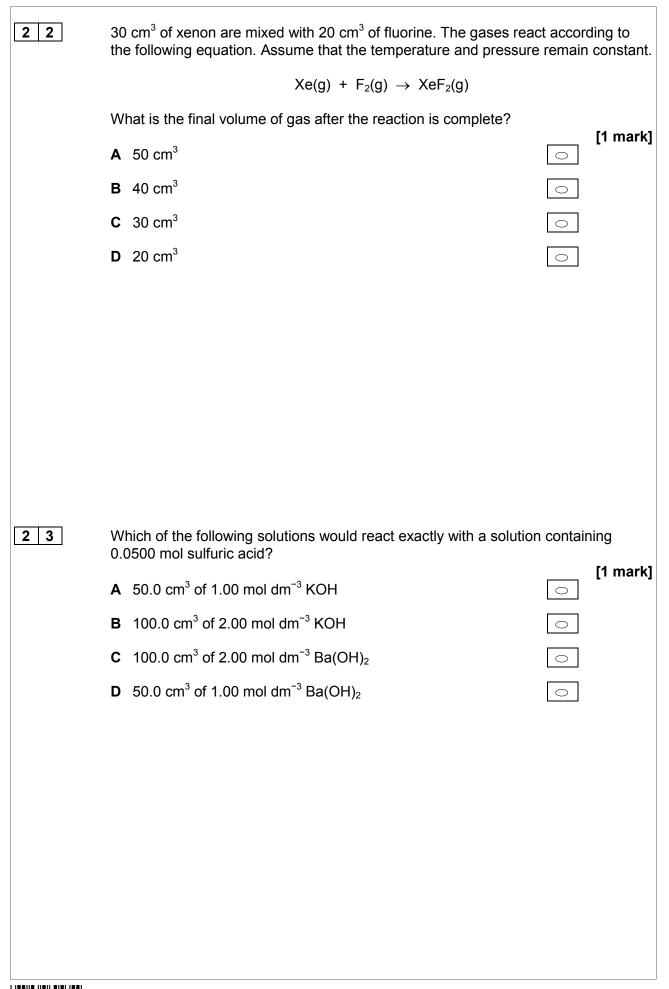
1 A student was given a powder made from a mixture of anhydrous barium chloride and anhydrous magnesium chloride. The student dissolved 1.056 g of the powder in water in a conical flask and added an excess of sulfuric acid. A white precipitate formed and was filtered off, washed and dried. The mass of this solid was 0.764 g.
 Identify the white precipitate and calculate the percentage, by mass, of magnesium chloride in the powder.


Turn over for the next question

	Section B	
	Answer all questions in the spaces provided	
	swer per question is allowed.	
For each ans	wer completely fill in the circle alongside the appropriate answer.	
CORRECT METHO	D WRONG METHODS 🕸 🖲 😂 🗹	
If you want to	o change your answer you must cross out your original answer as sh	10wn.
If you wish to shown.	return to an answer previously crossed out, ring the answer you now w	ish to select as
×	vour working out in the blank spaces around the questions but this will (not be marked.
	dditional sheets for this working.	
1 0	Which element is in the d-block of the Periodic Table?	
		[1 mark]
	A Selenium	
	B Antimony	0
	C Tantalum	0
	D Lead	0
1 1	Which species contains an element with an oxidation state of +4?	
		[1 mark]
	A NO ₂ ⁺	
	B ClO ₃	
	C H ₂ SO ₃	\bigcirc
	D PCl ₅	

A B	here are 392 mol of pure gold in a bar measuring 10 cm by 10 cm /hat is the density of gold in kg dm ⁻³ ? 193 19.3 1.93 0.193	n by 40 cm. [1 mark]]
W A B C	Ins of two isotopes of iron are ${}^{53}Fe^{2+}$ ${}^{56}Fe^{2+}$ thich statement is correct? The ions of both the isotopes have the electronic configuration $1s^22s^22p^63s^23p^64s^23d^6$ The ions of both the isotopes contains 26 neutrons ${}^{53}Fe^{2+}$ has fewer protons than ${}^{56}Fe^{2+}$ After acceleration to the same kinetic energy ${}^{56}Fe^{2+}$ will move more slowly than ${}^{53}Fe^{2+}$	[1 mar	k]
		Turn over	


Γ



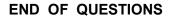
	Refer to the unbalanced equation below when answ	vering questions 16 and 17 .
	$K_2Cr_2O_7 \ + \ 3H_2C_2O_4 \ + \ _H_2SO_4 \ \rightarrow \ Cr_2(SO_4)_3 \ + \ _H_2SO_4 \ \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$_H_2O + 6CO_2 + K_2SO_4$
1 6	In the balanced equation the mole ratio for sul	furic acid to water is
	A 4.4	[1 mark]
	A 1:4	
	B 1:2	
	C 4:7	
	D 4:9	0
1 7	What is the reducing agent in this reaction?	
		[1 mark]
	A H ⁺	
	B $C_2O_4^{2-}$	\circ
	C K ⁺	0
	D $Cr_2O_7^{2-}$	0

A ClF ₃	mark]
B BF ₃	
C SF ₆	
D CF ₄	
2 1 In a molecule of a hydrocarbon, the fraction by mass of carbon is $\frac{9}{11}$	
What is the empirical formula of the hydrocarbon?	
A CH	mark]
B CH ₃	
C C ₃ H ₈	
$D C_5H_{12}$	

2 4

In a car airbag, sodium azide (NaN_3) decomposes to form sodium metal and nitrogen gas.

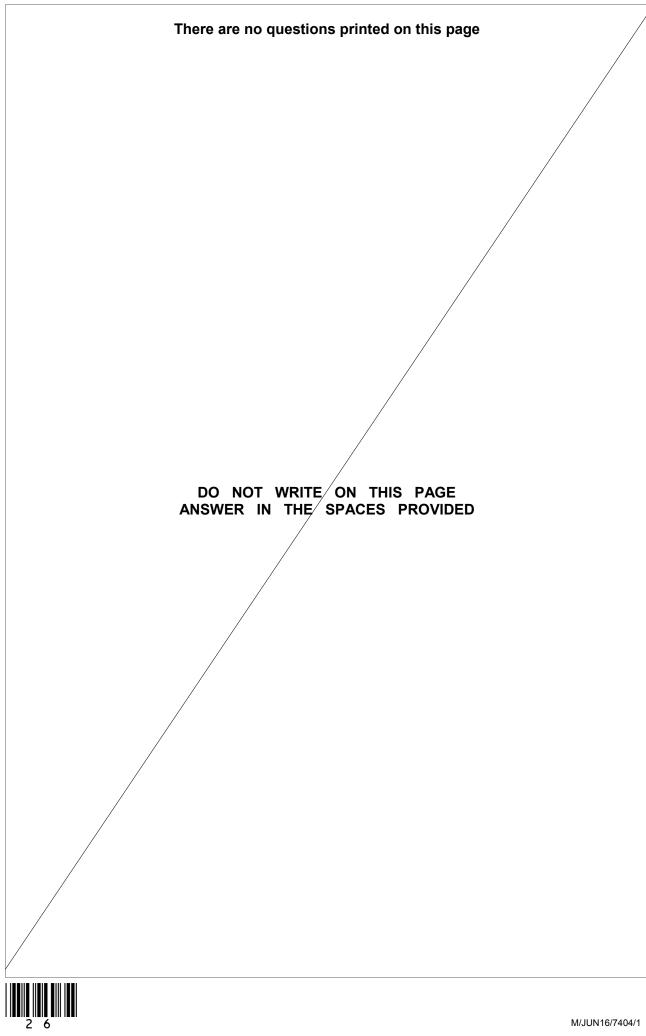
$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

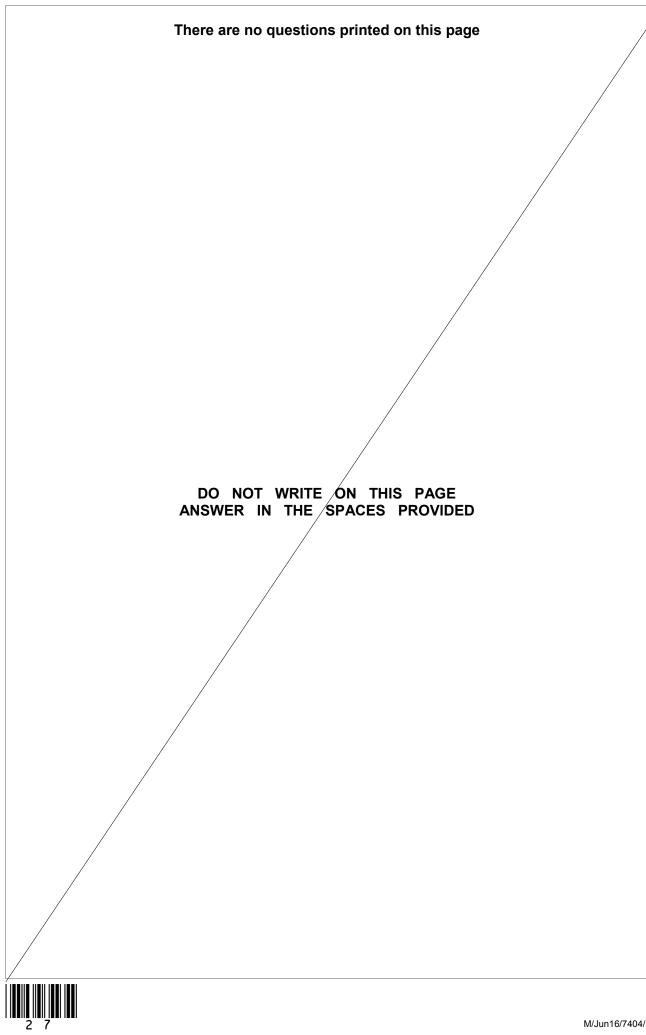

The sodium metal then reacts with potassium nitrate to produce more nitrogen gas.

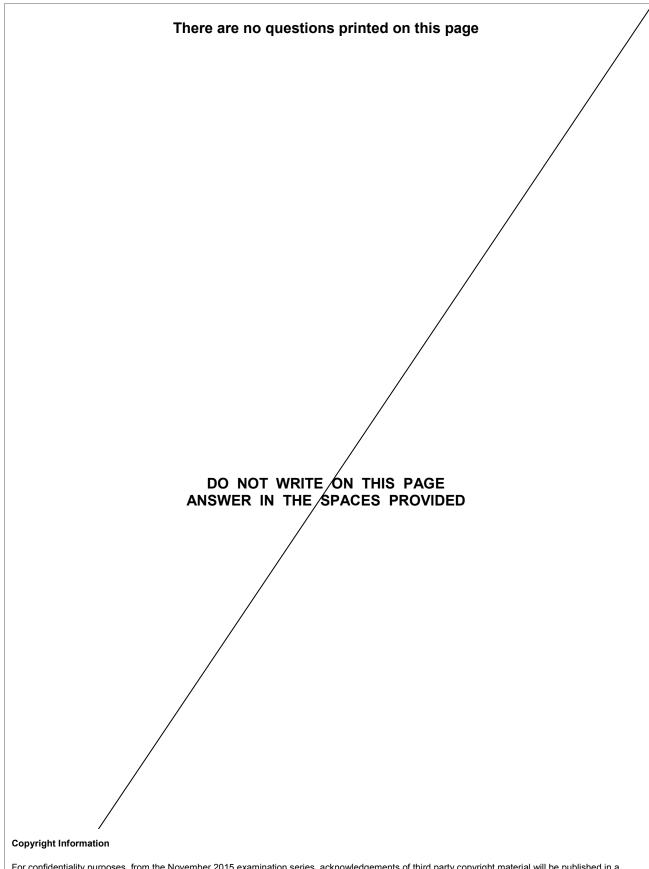
$$10Na(s) + 2KNO_3(s) \rightarrow N_2(g) + 5Na_2O(s) + K_2O(s)$$

If 2.00 mol of sodium azide react in this way, how many molecules of N_2 will be formed?

(The Avogadro constant L = $6.022 \times 10^{23} \text{ mol}^{-1}$)


- **A** 2.41 x 10²⁴
- **B** 1.93 x 10²⁴
- **C** 1.81 x 10²⁴
- **D** 9.63 x 10^{23}





For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

