AQA	
Please write clearly in	ו block capitals.
Centre number	Candidate number
Surname	HODEL ANSWERS
Forename(s)	
Candidate signature	

AS CHEMISTRY

Paper 2: Organic and Physical Chemistry

Friday 10 June 2016 Afternoon Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 80.
- The Periodic Table/Data Sheet is provided as an insert.

Advice

• You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

IB/M/JUN16/7404/2

$CH_{2}=CH_{2}(g) + H_{2}O(g) \rightleftharpoons CH_{3}CH_{2}OH(g)$ $D 1 \cdot 1 \text{Write an expression for the equilibrium constant } K_{c} \text{ for this equilibrium.} \\ Deduce the units of K_{c}. \qquad [2 \text{ marks}] \\ \text{Expression } \underline{K_{c}} = \underline{[CH_{3}CH_{2}OH]} \\ \underline{[CH_{2}=CH_{2}][H_{2}O]} \\ \text{Units } \underline{Md!^{-1} dM^{3}} \\ \text{Units } \underline{Md!^{-1} dM^{3}} \\ \text{CH}_{2} = \underline{CH_{2}} + \underline{CH_{2}$		
Ethene reacts with steam in the presence of an acid catalyst to form ethanol. $CH_2=CH_2(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$ 2 1 . 1 Write an expression for the equilibrium constant K_c for this equilibrium. Deduce the units of K_c . [2 marks] Expression $\underline{k_c} = \underline{[CH_3CH_2OH]}$ Units $\underline{Md}^{-1} d\underline{M}^3$ Units $\underline{Md}^{-1} d\underline{M}^3$ 2 An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . Calculate a value of K_c for this equilibrium at this temperature. Give your answer to an appropriate number of significant figures. $\underline{k_c} = (\underline{4 + 4 \circ f_{2 - 00}} = 10 - 4.76$ $\underline{f(2 - 70/2 - 00)} \approx (\underline{f(2 - 20)} = 10 - 4.76$		Section A
$CH_{2}=CH_{2}(g) + H_{2}O(g) \rightleftharpoons CH_{3}CH_{2}OH(g)$ $0 1 \cdot 1 \text{ Write an expression for the equilibrium constant } K_{c} \text{ for this equilibrium.} Deduce the units of K_{c}. [2 marks] Expression \underline{k_{c}} = \underline{[CH_{3}CH_{2}OH]} \\ \underline{[CH_{2}=CH_{2}][H_{2}O]} \\ \text{Units } \underline{Md!^{-1} dM^{3}} \\ \text{Units } \underline{Md!^{-1} dM^{3}} \\ \text{O 1 } \cdot 2 \text{ An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature T. The volume of the container was 2.00 dm^{3}. \\ \underline{Calculate a value of K_{c}} \text{ for this equilibrium at this temperature.} \\ \text{Give your answer to an appropriate number of significant figures.} \\ \underline{k_{c}} = (4 \cdot 4 \circ / 2 \cdot 0 \circ) = 10 \cdot 4.76 \\ \underline{(7.70/2 \cdot 0 \circ)} \approx (\frac{1 \cdot 2 \circ / 2 \cdot 0 \circ}{2 \cdot 0 \circ} \\ \underline{k_{c}} = 10 \cdot 5 \\ \end{array}$		Answer all questions in this section.
0 1 . 1 Write an expression for the equilibrium constant K_0 for this equilibrium. Deduce the units of K_0 . [2 marks] Expression $\underline{k_c} = \underline{[CH_3(H_2OH]]}$ $\underline{[CH_2 = CH_2][H_2O]}$ Units $\underline{md}^{-1} d\underline{m}^3$ 0 1 . 2 An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . Calculate a value of K_0 for this equilibrium at this temperature. Give your answer to an appropriate number of significant figures. $\underline{k_c} = (4 \cdot 4^0 / 2 \cdot 0^0) = 10 \cdot 476$ $\underline{(0.70^0 / 2 \cdot 0^0) \approx (1.29^0 / 2 \cdot 0^0)}$	1	Ethene reacts with steam in the presence of an acid catalyst to form ethanol.
Deduce the units of K_c . [2 marks] Expression $\underline{k_c} = \underline{[CH_3CH_2OH]}$ $\underline{[CH_2 = CH_2][H_2O]}$ Units $\underline{Md}^{-1} d\underline{M}^3$ Units $\underline{Md}^{-1} d\underline{M}^3$ O 1 . 2 An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature T . The volume of the container was 2.00 dm ³ . Calculate a value of K_c for this equilibrium at this temperature. Give your answer to an appropriate number of significant figures. $\underline{k_c} = (4 \cdot 4^{\circ}/2 \cdot \omega_c) = 10 \cdot 476$ $\underline{(0 \cdot 7^{\circ}/2 \cdot \omega_c)} \approx (1 \cdot 2^{\circ}/2 \cdot \omega_c)$		$CH_2=CH_2(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$
Expression $\underline{k_c} = \underline{[CH_3CH_3OH]}$ $\underline{[CH_3 = CH_3][H_3O]}$ Units $\underline{mol}^{-1} d\underline{m}^3$ Units $\underline{mol}^{-1} d\underline{m}^3$ 1. 2 An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . <u>Calculate a value of K_c</u> for this equilibrium at this temperature. Give your answer to an appropriate number of significant figures. $\underline{k_c} = (4 \cdot 4^{\circ}/2 \cdot 0^{\circ}) = 10 \cdot 476$ $\underline{(0.70/2 \cdot 00) \approx (1 \cdot 2^{\circ}/2 \cdot 00)}$	0 1 . 1	Deduce the units of $K_{\rm c}$.
$CH_{2} = CH_{2} \int LH_{2}O_{1}$ Units <u>Mol</u> ⁻¹ dw ³ Units <u>Mol</u> ⁻¹ dw ³ An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . <u>Calculate a value of K_c for this equilibrium at this temperature.</u> Give your answer to an <u>appropriate number of significant figures</u> . [2 marks] <u>Kc</u> = (4.40/2.00) = 10.476 (0.70/2.00) = (1.20/2.00) <u>Kc</u> = 10.5		[2 marks]
$CH_{2} = CH_{2} \int LH_{2}O_{1}$ Units <u>Mel - ' dm³</u> Units <u>Mel - ' dm³</u> O 1 . 2 An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . <u>Calculate a value of K_c for this equilibrium at this temperature.</u> Give your answer to an appropriate number of significant figures. [2 marks] <u>kc = (4.40/2.00) = 10.476</u> (0.70/2.00) = (1.20/2.00) <u>kc = 10.5</u>		Expression $k_c = [CH_3(H_2OH]]$
0 1 . 2 An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . Calculate a value of K_c for this equilibrium at this temperature. Give your answer to an appropriate number of significant figures. $k_c = (4.49/2.00) = 10.476$ $(0.79/2.00) \times (1.29/2.00)$		$[CH_2 = CH_2][H_20]$
steam and 4.40 mol of ethanol at a temperature <i>T</i> . The volume of the container was 2.00 dm ³ . <u>Calculate a value of K_c for this equilibrium at this temperature.</u> Give your answer to an appropriate number of significant figures. [2 marks] <u>Kc = (4.40/2.00) = 10.476</u> (0.70/2.00) × (1.20/2.00) <u>Kc = 10.5</u>		Units Mol- dm ³
Give your answer to an <u>appropriate number of significant figures</u> . $ \underbrace{k_{c} = (4 \cdot 4^{\circ} / 2 \cdot 0^{\circ})}_{(0 \cdot 7^{\circ} / 2 \cdot 0^{\circ})} = 10 \cdot 476 $ $ \underbrace{k_{c} = 10 \cdot 5} $ $ \underbrace{k_{c} = 10 \cdot 5} $	0 1 . 2	steam and 4.40 mol of ethanol at a temperature T . The volume of the container
$\begin{array}{rcl} & [2 marks] \\ \hline k_{c} &= & (4 \cdot 40 / 2 \cdot 00) \\ & & (0 \cdot 70 / 2 \cdot 00) \\ \hline \hline & (0 \cdot 70 / 2 \cdot 00) \\ \hline \\ \hline & & k_{c} &= & 10 \cdot 5 \end{array}$		Calculate a value of $K_{\rm c}$ for this equilibrium at this temperature.
$\frac{(0.70/2.00) \times (1.20/2.00)}{k_{c}} = 10.5$		[2 marks]
		71.201
(\$\$.1.)		
		(3.5.6.)
	0 2	M/JUN16/7404

4

2

Alcohols such as methanol (CH₃OH), ethanol (CH₃CH₂OH) and propan-1-ol (CH₃CH₂CH₂OH) are good fuels. **0 2** . **1** A student carried out an experiment to determine the enthalpy of combustion of methanol. Methanol was placed in a spirit burner and the mass of the spirit burner measured. The student placed 100 g of water in a copper calorimeter and clamped it above the spirit burner. The burner was lit and allowed to burn for a few minutes. The flame was then extinguished and the new mass of the spirit burner found. The measured temperature rise was 38.0 °C. The specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$. Figure 1, a diagram of the apparatus, is shown alongside Table 1 which shows the measurements the student recorded. Table 1 Figure 1 Thermometer Mass of burner containing 214.02 g Clamp methanol before experiment Copper calorimeter Water Mass of burner containing 212.37 g methanol after Spirit burner experiment Methanol Use the student's data to calculate an experimental value for the enthalpy of combustion of methanol in kJ mol⁻¹. [4 marks] MCAT 100 x 4.18 x 38 5884 J MCH30H = 1.65g n CH30H = 1.65/32 = 0.0516 $\Lambda H =$ $\frac{15884 \times 10^{-3}}{0.0516} = -307 \text{ kT well}$ (allew - 305 to

M/JUN16/7404/2

0 3 . 3 Isooctane is added to petrol to increase its octane rating. Some high-performance engines require fuel with a higher octane rating. Write an equation for the complete combustion of isooctane. Use the molecular formula (C_8H_{18}) of isooctane in your equation. [1 mark] $C_8H_{18} + 12\%_2 \rightarrow 8CO_2 + 9H_20$ **0 3 . 4** Explain, in general terms, how a catalyst works. [2 marks] provides alternative pathway (novie 41 MA lower activation energy with 0 3 . 5 Carbon monoxide is produced when incomplete combustion takes place in engines. Nitrogen monoxide is another pollutant produced in car engines. Write an equation to show how these pollutants react together in a catalytic converter. [1 mark] $2(0+2NO > 2(0_2+N_2)$ 0 3 . 6 Platinum, palladium and rhodium are metals used inside catalytic converters. A very thin layer of the metals is used on a honeycomb ceramic support. Explain why a thin layer is used in this way. [2 marks] MI gives a larger surface area so smaller amounts of metal a MA Question 3 continues on the next page Turn over Turn over

$\begin{bmatrix} 0 & 3 \end{bmatrix}$. $\begin{bmatrix} 7 \end{bmatrix}$ Oleic acid (C ₁₈ H ₃₄ O ₂) is a straight-chain fatty acid obtained from plant oils. Isooctane can be made from oleic acid. The skeletal formula of oleic acid is	
shown in Figure 3 .	
Figure 3	
О	
Identify a reagent that could be used in a chemical test to show that oleic acid is unsaturated.	
State what would be <u>observed</u> in this test. [2 marks]	
Reagent promine water	M
Observation turns colourless	Ha
M/JUN16/7404/2]

0 4 . 3 <u>Predict the relative boiling points</u> of these three compounds from the <u>highest to</u> the <u>lowest boiling points</u> .
Justify this order in terms of intermolecular forces. [6 marks]
· Boiling point order: prop-2-en-1-ol > proponal > butane
. Prop-2-en-ol has hydrogen bonde between volexules
. Propanal has dipile-depole forces between molecules
Butane has van der Waals' forces between molecules
· Strength of intervolendar forces: hydrogen bunds > dipule-dipole > van der waals
Turn over ► 1 1

0 5 . 4 One of the steps in the synthesis of 1,1,1-trifluoroethane (CF₃CH₃) is the reaction of 1,1-difluoroethane (CHF₂CH₃) with fluorine in a free-radical substitution reaction. Write two equations to represent the propagation steps in this conversion of CHF₂CH₃ into CF₃CH₃ [2 marks] Propagation step 1 $CHF_2CH_3 + \cdot F \rightarrow \cdot CF_2(H_3 + HF)$ Propagation step 2 $\cdot CF_2(H_3 + F_2 \rightarrow CF_3(H_3 + \cdot F_2))$ **0 5** . **5** A refrigerator contains 1.41 kg of 1, 1, 1-trifluoroethane (CF₃CH₃). Calculate the number of molecules of 1,1,1-trifluoroethane in the refrigerator. Give your answer to an appropriate number of significant figures. (The Avogadro constant L = $6.022 \times 10^{23} \text{ mol}^{-1}$) [2 marks] $N = 1.41 \times 10^3 = 16.79 \text{ mol}$ N= m MI HC molecules = melecules = $16.79 \times 6.022 \times 10^{23} = 1.01 \times 10^{25}$ nL (3s.f.) H2 0 5 . 6 There are growing concerns about the use of 1,1,1-trifluoroethane as a refrigerant as it is a greenhouse gas that absorbs some of Earth's infrared radiation. Give one reason why bonds in molecules such as carbon dioxide and 1,1,1-trifluoroethane absorb infrared radiation. [1 mark] bonds vibrate bend stretch Turn over ▶ M/JUN16/7404/2

M/JUN16/7404/2

	Section B	
	Answer all questions in this section.	
	Answer per question is allowed. Inswer completely fill in the circle alongside the appropriate answer THOD • WRONG METHODS • • • • •	ver.
lf you want	t to change your answer you must cross out your original answe	r as shown. 💌
If you wish shown.	to return to an answer previously crossed out, ring the answer you	now wish to select as
You may do Do not use	o your working out in the blank spaces around the questions but thi additional sheets for this working.	s will not be marked.
09	Which of the following compounds would form an orange-red heated with Fehling's solution?	
		[1 mark]
	A CH ₃ CH ₂ CN	0
	B CH ₃ CH ₂ COOH	0
	c ch₃cho aldehyde	•
	D CH ₃ COCH ₃	0
1 0	Pentanenitrile can be made by reaction of 1-bromobutane wi potassium cyanide. Which of these is the correct name for the mechanism of this	
	A Electrophilic addition	0
	B Electrophilic substitution	0
	C Nucleophilic addition	\bigcirc
	D Nucleophilic substitution	

1 1	Propene can be made by the dehydration of propan-2-ol.	
	What is the percentage yield when 30 g of propene (M_r = 42.0) ar 50 g of propan-2-ol (M_r = 60.0)?.	e formed from
		[1 mark]
	A 60%	0
	B 67%	\bigcirc
	C 81%	0
	D 86%	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
mole	25 = 50 = 0.83 0.83	
	66.0 mass = $0.83 \times 42.0 = 35g$	
	1. yield = 30 × 100	
1 2	Sulfur dioxide (SO ₂) is produced when some fossil fuels are burn	ed.
	Which of the following statements is true?	[1 mark]
	A Sulfur dioxide can be removed from waste gases in a power station by an acid-base reaction with calcium oxide.	•
	B Sulfur dioxide is insoluble in water.	\bigcirc
	 C Sulfur dioxide is a basic oxide. D Sulfur dioxide is an ionic compound. 	0
	D Sulfur dioxide is an ionic compound.	0

Do not write outside the box

Turn over 🕨

2 3 2 mol of ideal gas X are stored in a flask of fixed volume.				
Which of the following changes would lead to the greatest increase in pressure in the fleet of t			essure	
	inside the flask?			[1 mark]
	Α	Increasing the temperature from 20 °C to 200 °C	0	
	в	Adding another 1 mol of gas X into the flask at fixed temperature	0	
	С	Adding 0.5 mol of argon gas and increasing the temperature from 20 $^\circ\mathrm{C}$ to 150 $^\circ\mathrm{C}$		
	D	Removing 0.5 mol of gas X and increasing the temperature from 20 °C to 300 °C	0	
		END OF QUESTIONS		

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

