AQA

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

AS **CHEMISTRY**

Paper 1 Inorganic and Physical Chemistry

Tuesday 22 May 2018	Morning	Time allowed: 1 h	iour 30	minutes
Materials For this paper you must have:		(crolood)	For Exam	iner's Use
 the Periodic Table/Data Sheet, provided as a a ruler with millimetre measurements a scientific calculator, which you are expected 		where appropriate.	1	
Instructions	nen		3	
 Fill in the boxes at the top of this page. Answer all questions. You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. All working must be shown. 		5		
		7		

- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be • marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80. •

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B. •

IB/M/Jun18/E9

7404/1

9

Section B

TOTAL

	Section A
	Answer all questions in this section.
0 1	This question is about atomic structure.
	In the nineteenth century JJ Thomson discovered the electron. He suggested that negative electrons were found throughout an atom like 'plums in a pudding of positive charge'.
	Figure 1 shows an atom of element R using the 'plum pudding' model. An atom of R contains seven electrons.
	Figure 1
	electrons
01.1	State two differences between the 'plum pudding' model and the model of atomic structure used today. [2 marks]
:	2
01.2	Deduce the full electron configuration of an atom of element R . [1 mark]
01.3	Identify R and deduce the formula of the compound formed when R reacts with the Group 2 metal in the same period as R . [1 mark]

02	This question is about sodium fluoride (NaF).	
	Some toothpastes contain sodium fluoride. The concentration of sodium fluoride can be expressed in parts per million (ppm). 1 ppm represents a concentration of 1 mg in every 1 kg of toothpaste.	
02.1	A 1.00 g sample of toothpaste was found to contain 2.88 x 10^{-5} mol of sodium fluoride.	
	Calculate the concentration of sodium fluoride, in ppm, for the sample of toothpaste. Give your answer to 3 significant figures.	
	[4 mark	(s]
	Concentration of sodium fluoride ppr	n

02.2	Sodium fluoride is toxic in high concentrations. Major health problems can occur if concentrations of sodium fluoride are greate 3.19×10^{-2} g per kilogram of body mass.	er than
	Deduce the maximum mass of sodium fluoride, in mg, that a 75.0 kg person consultant without reaching the toxic concentration	uld
	[1	mark]
	Mass of sodium fluoride	_mg
02.3	The concentration of sodium fluoride in a prescription toothpaste is 2800 ppm.	
	Use your answer to Question 02.2 to deduce the mass of toothpaste, in kg, that 75.0 kg person could swallow without reaching the toxic concentration	ta
	[1	mark]
	Mass of toothpaste	_kg

0 3.2	The correct value for x is 10
	Suggest a reason for the difference between the experimental value for x and the
	correct value. (If you were unable to calculate an experimental value for x assume it was 8.05.
	This is not the correct experimental value.) [1 mark]
03.3	Suggest how the procedure could be improved, using the same apparatus, to give a more accurate value for x
	[2 marks]
	Suggestion
	Justification
	Turn over for the next question

Turn over for the next question

9

0 5.2	Sketch on the graph in Figure 4 how the concentration of sulfur dioxide changes over these 6 minutes at temperature T_1 [2 marks]
05.3	The temperature of the mixture was changed to <i>T</i> ₂ and the mixture left to establish a new equilibrium. In the new equilibrium mixture the concentration of sulfur trioxide was found to be 0.07 mol dm ⁻³ Deduce which of <i>T</i> ₁ and <i>T</i> ₂ is the higher temperature. Explain your deduction. [2 marks] Higher temperature Explanation
	Turn over for the next question

A student determined the relative molecular mass, M_r , of an unknown volatile liquid **Y** in an experiment as shown in **Figure 5**. The student used a hypodermic syringe to inject a sample of liquid **Y** into a gas syringe in an oven.

At the temperature of the oven, liquid ${\bf Y}$ vaporised.

The student's results are shown in Table 2.

hypodermic syringe

Т	al	bl	е	2
	~	•	•	_

Mass of hypodermic syringe and liquid Y before injection	10.91 g
Mass of hypodermic syringe and liquid Y after injection	10.70 g
Oven temperature	98.1 °C
Atmospheric pressure	102 kPa
Increase in volume in gas syringe after injection of Y	85.0 cm ³

06.1	Define the term relative molecular mass (M_r) .
	Use the experimental results in Table 2 to determine the relative molecular mass of Y . The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
	[0
06.2	Some of the liquid injected did not evaporate because it dripped into the gas syringe nozzle outside the oven.
	Explain how this would affect the value of the M_r of Y calculated from the experimental results.
	[2 marks]

0 7	Chlorine is used to decrease the numbers of microorganisms in water.
	When chlorine is added to water, there is a redox reaction, as shown by the equation
	$Cl_2 + H_2O \Rightarrow HClO + HCl$
07.1	Deduce the oxidation state of chlorine in HClO and the oxidation state of chlorine in HCl HCl [1 mark]
	Oxidation state of chlorine in HClO
	Oxidation state of chlorine in HCl
07.2	Give two half-equations to show the oxidation and reduction processes that occur in this redox reaction. [2 marks]
	Oxidation half-equation
	Reduction half-equation
07.3	Chlorine is reacted with cold, aqueous sodium hydroxide in the manufacture of bleach.
	Give an equation for this reaction between chlorine and sodium hydroxide. [1 mark]

IB/M/Jun18/7404/1

0 7.5

Potassium chlorate(VII), KClO₄, is used in fireworks. When potassium chlorate(VII) decomposes, it produces potassium chloride and oxygen.

Give an equation for the decomposition of potassium chlorate(VII). Use the data in **Table 3** to calculate the enthalpy change for this reaction.

[2 marks]

Substance	$\Delta_{\rm f} H$ / kJ mol ⁻¹
KClO ₄ (s)	-434
KCl(s)	-436

Equation

Enthalpy change_____kJ mol⁻¹

09	This question is about compounds containing fluorine.
09.1	Draw the shape of a molecule of krypton difluoride (KrF ₂). Include in your answer any lone pairs of electrons that influence the shape. Name the shape produced by the atoms in a KrF ₂ molecule and suggest a bond angle. [3 marks]
	Name of shape
	Bond angle
09.2	There are two lone pairs of electrons on the oxygen atom in a molecule of oxygen difluoride (OF_2).
	Explain how the lone pairs of electrons on the oxygen atom influence the bond angle in oxygen difluoride
	[2 marks]

09.3	Silicon tetrafluoride (SiF ₄) is a tetrahedral molecule.
	Deduce the type of intermolecular forces in SiF_4 Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF_4
	[3 marks]
	Intermolecular forces in SiF ₄
	Explanation

Section B						
	Answer all questions in this section.					
Only o For ea	ne ansv ch ansv	wer per question ver completely fil	is allowed. Il in the circle alc	ngside the appr	ropriate an	swer.
CORREC	T METHOD	• WR	ONG METHODS			
If you v	want to	change your ans	swer you must ci	ross out your ori	iginal answ	ver as shown.
If you v as sho	wish to wn. 🏹	return to an ansv	ver previously cr	ossed out, ring	the answe	r you now wish to select
You m	av do v	≫ our working in th	e blank space a	round each que	stion but th	is will not be marked.
Do not	t use ac	Iditional sheets f	or this working.			
1 0	Which	row shows the t	conding in ammo	onium chloride?		[1 mark]
		Covalent	Dative	lonic		
	Δ	v v v	covalent ×	×		
	В	✓	✓	×		
	С	✓	✓	✓		
	D	×	×	~	0	
		I				
1 1	How n	nany protons are	there in 6.0 g o	f nitrogen gas?		
	Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ [1 mark]					[1 mark]
A 1.3 x 10 ²³						
	B 9.0	x 10 ²³				
	C 1.8	x 10 ²⁴	0			
	D 3.6	x 10 ²⁴	0			

1 4	Which substance is used to reduce titanium(IV) chloride in the extraction of titanium				
	metal?		[1 mark]		
	A Magnesium				
	B Manganese				
	C Vanadium				
	D Zinc				
1 5	Which statement about barium sulfate is cor	rrect?	[1 mark]		
	A It is soluble in water at a temperature of 7	100 °C.	0		
	B It is used in medicine because it does not dissolve in body fluids.				
	C It is a pale yellow solid.				
	D It reacts with acidified barium chloride so	lution.	0		
1 6	Which statement is correct about the reaction between concentrated sulfuric acid and				
	solid sodium bromide?				
	A Bromide ions are reduced.		0		
	B Hydrogen bromide and sulfur are formed		0		
	C Sulfuric acid acts as an oxidising agent.		0		
	D Bromine and hydrogen sulfide are formed	d.	0		

1 7	Which compound is used to treat the symptoms of indigestion?		[1 mark]
	A MgO	0	
	B Mg(OH) ₂	0	
	C CaO	0	
	D Ca(OH) ₂	0	
1 8	Which element has the highest fir	rst ionisation energy?	[1 mark]
	A Aluminium	0	
	B Phosphorus	0	
	C Silicon	0	
	D Sulfur	\bigcirc	
19	A solution of volume 500 cm ³ cor	ntains 150 g of ammonia.	
	What is the concentration, in mol dm^{-3} , of ammonia in this solution?		
	A 0.51	0	
	B 8.82	0	
	C 16.7	0	
	D 17.6	0	

	Refer to the following information when answering Questions 20, 21, 22, 23 and 24.				
	A student devised an experiment to find the concentration of sulfuric acid in a sample of battery acid.				
	 A measuring cylinder was used to transfer 10 cm³ of battery acid to a volumetric flask. Distilled water was added to the volumetric flask until the volume reached 250 cm³ A 25.0 cm³ sample of diluted acid was transferred from the volumetric flask to a conical flask using a pipette 				
	 A few drops of methyl orange indicator were added to the acid in the conical flask before titrating the acid with sodium hydroxide. The titration was repeated five times but concordant results were not obtained. (Note: Methyl orange is red in acid and yellow in alkali.) 				
20	Which suggestion would improve the chances of obtaining concordant titres? [1 mark]				
	A Invert the volumetric flask several times after adding the distilled water.				
	B Wash the pipette with distilled water between each titration.				
	C Add extra drops of indicator to the sample when nearing the end point				
	D Use a more concentrated solution of sodium hydroxide in the burette.				
2 1	Which suggestion about rinsing the conical flask between each titration would improve the accuracy of the titrations? [1 mark]				
	A Rinsing with acid.				
	B Rinsing with alkali.				
	C Rinsing with water.				
	D No rinsing with any liquid.				
1					

22	Which suggestion would reduce the overall measurement uncerta	inty in the titration? [1 ma	ırk]	
	A Use less concentrated alkali in the burette.	0		
	B Use phenolphthalein indicator instead of methyl orange.	0		
	C Use smaller samples of the diluted acid in each titration.	0		
	D Begin each titration with the burette filled to the $0.00 \mathrm{cm}^3$ mark.	0		
23	Which of these is important in ensuring that the student's experim	ent is safe? [1 ma	ırk]	
	A Do the titration in a fume cupboard.	0		
	B Wear gloves when measuring out the battery acid.	0		
	C Wash hands before doing the titration.	0		
	D Carry the burette horizontally when collecting the apparatus.			
24	Which colour change is observed at the end point in each titration	? [1 ma	ırk]	
	A Yellow to red			
	B Red to orange			
	C Yellow to orange			
	D Red to yellow			
	END OF QUESTIONS			

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

