AQA

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname	HODEL	ANSWERS	
Forename(s)			
Candidate signature			

AS CHEMISTRY

Paper 2 Organic and Physical Chemistry

Friday 25 May 2018	Morning	Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- · Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

• You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

Section A

Answer all questions in this section.

0 1

Hydrogen peroxide solution decomposes slowly to form water and oxygen. The reaction is much faster in the presence of a manganese(IV) oxide catalyst.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

Three experiments, shown in **Table 1**, were carried out to investigate how the volume of oxygen produced varied over time under different conditions. The same mass of catalyst was used in each experiment.

Experiment	Concentration of H₂O₂(aq) / mol dm ⁻³	Volume of H ₂ O ₂ (aq) / cm ³	Temperature /°C	Catalyst
1	1.0	50	20	lumps
2	1.0	50	20	powder
3	0.5	50	20	lumps

Table 1

Figure 1 shows how the volume of oxygen collected varied with time in Experiment 1.

Figure 1

0 1 . 1 Explain, in general terms, how a catalyst increases the rate of a reaction. [2 marks] an alternative provides 14 Toute pathwou lower activation energy with H2 0 1. 2 Draw two lines on Figure 1 to show how the volume of oxygen collected varied with time in Experiments 2 and 3. Label each line with the experiment number. [2 marks] 0 1. 3 Explain, in terms of collision theory, the effect of increasing the concentration of hydrogen peroxide on the rate of reaction. [2 marks] molecules H202 in same · More Dar 19 MI volume frequent successful collisions More M2 6 Turn over ►

Turn over **>**

0 4.3	Give an equation for the complete combustion of nonane. [1 mark	<]
04.4	CqH ₂₀ + 140 ₂ → 900 ₂ + 10H ₂ O Nonane is often found in fuel for jet engines. Combustion in jet engines produces pollutants including <u>nitrogen monoxide</u> (NO). Explain how this nitrogen monoxide is formed. [2 marks <u>nihogen and oxygen react</u> <u>at high temperatures</u>	- м1 _ м2
04.5	Nonane can be cracked to form large quantities of propene. Name the type of cracking used. Thermal	
04.6	The main use of propene, formed from cracking, is to make poly(propene). Draw the repeating unit of poly(propene). $ \begin{array}{c} $]
	Turn over for the next question	9

Turn over ►

	out
	_
	-
	_
	-
	-
	-
	_
	_
	_
	-
	-
	_
	_
	_
	_

Turn over ►

Turn over ►

15

Turn over 🕨

ſ	
0 7.1	Four compounds, all colourless liquids, are
	 butan-2-ol 1° alcoho] butanal alcoho]
	 butanal adde right butanone ke hinc
	 2-methylpropan-2-ol ومادولها
	Two of these compounds can be identified using different test-tube reactions.
	Describe these two test-tube reactions by giving reagents and observations in each case.
	Suggest how the results of a spectroscopic technique could be used to distinguish between the other two compounds.
	[6 marks]
	· Acidihed potassium dichromate
	Reads butan-2-of and butanol only
	(Orange to) green
	· Tollens' or Fenlings
	Reacts butanal only
	silver mirror or (blue to) red ppt
	• 1R
	Alcohols OH 3230-3550
	Aldehyde and Ketone C=0 1680-1750
	Fingerprint region can be used to distinguish between molecules with Same functional groups
	distinguish between molecules with
	Same functional groups
	Ú I
-	

	outsie be
	-
	_
	-
	_
	_
	-
	-
	_
	- -
	- 6
Turn over I	

[
		Section B				
	Answer all questions in this section.					
Only o For ea	one answer pe ich answer co	r question is allowed. mpletely fill in the circle alongside the appropriate answer.				
		WRONG METHODS 🗴 💿 🚓 💅				
If you v	want to chang	e your answer you must cross out your original answer as shown. 刘	\triangleleft			
If you v as sho	wish to return wn.	to an answer previously crossed out, ring the answer you now wish to	select			
You m Do not	ay do your wo t use additiona	rking in the blank space around each question but this will not be ma al sheets for this working.	^r ked.			
09	0 9 A student has a 10 cm ³ sample of 1.00×10^{-2} mol dm ⁻³ methanoic acid solution. The student is asked to dilute the methanoic acid solution to a concentration of 2.00×10^{-4} mol dm ⁻³ by adding distilled water.					
	Which volum	ne of water should be added?				
		$N_1 = N_2$	[1 mark]			
	A 200 cm ³	$C_1 V_1 = C_2 V_2$				
	B 490 cm ³	$1 \times 10^{-2} \times 10 \times 10^{-3} = 2 \times 10^{-4} V_2$				
	C 500 cm ³	$V_2 = \frac{1 \times 10^{-2} \times 10 \times 10^{-3}}{2 \times 10^{-4}}$				
	D 510 cm ³	$= 0.5 dm^3 = 500 cm^3$				
		water added 500-10 = 490 cm ³				
1 0		ule does not have a permanent dipole? #-C-Br	[1 mark]			
	A CH₃Br	H Br O				
	B CH ₂ Br ₂	Br-c-Br Br-c-Br				
	\mathbf{C} CHBr ₃	H Br O				
	D CBr₄	$\begin{array}{ccccc} H & Br & \odot \\ H & Br & & \\ Br - C - Br & Br & & \\ H & Br & & \\ Br - C - Br & & \\ Br & & \\ \end{array}$				

1 3	Which compound has the highest boiling point?		[1 mark]
	AbutanalBbutan-2-olhydrogen bondingCbut-2-eneD1-fluorobutane	0	
14	Which statement is correct about the fractional distillation of crude oil?		[1 mark]
	 A zeolite catalyst is used. B Each fraction contains a mixture of hydrogenhaus. 		
	B Each fraction contains a mixture of hydrocarbons.C Gaseous fractions are formed by breaking covalent bonds.		
	D The fractionating column is hottest at the top.		
	How many structural isomers with an unbranched carbon chain have the formula $C_4H_8Br_2$? H H H H H Br H H Br -C - C - C - C - C - H H - C - C - C -		ar [1 mark]

2 5

Turn over **>**

=(-2434)- (-2546)

= + 112

26

2 6

C +746 kJ mol⁻¹

D -746 kJ mol⁻¹

0

