Please write clearly in block cap	i.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

A-level CHEMISTRY

Paper 3

Wednesday 20 June 2018

Morning

Time allowed: 2 hours

Question

1

2 3

4

Section B

TOTAL

For Examiner's Use

Mark

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of the page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend about 70 minutes on Section A and 50 minutes on Section B.

	Section A
	Answer all questions in this section.
0 1	lodide ions are oxidised to iodine by hydrogen peroxide in acidic conditions.
	$H_2O_2(aq) + 2H^{\scriptscriptstyle +}(aq) + 2I^{\scriptscriptstyle -}(aq) \to I_2(aq) + 2H_2O(I)$
	The rate equation for this reaction can be written as
	$rate = k[H_2O_2]^a[I^-]^b[H^+]^c$
	In an experiment to determine the order with respect to $H^{+}(aq)$, a reaction mixture is made containing $H^{+}(aq)$ with a concentration of 0.500 mol dm ⁻³
	A large excess of both H_2O_2 and I^- is used in this reaction mixture so that the rate equation can be simplified to
	$rate = k_1 [H^+]^c$
01.1	Explain why the use of a large excess of H_2O_2 and I^- means that the rate of reaction at a fixed temperature depends only on the concentration of $H^+(aq)$. [2 marks]
	Samples of the reaction mixture are removed at timed intervals and titrated with alkali
0 1 2	Samples of the reaction mixture are removed at timed intervals and titrated with alkali to determine the concentration of $H^{+}(aq)$.
	State and explain what must be done to each sample before it is titrated with alkali. [2 marks]

0 1.8	A general equation for a reaction is shown.
	$A(aq) + B(aq) + C(aq) \rightarrow D(aq) + E(aq)$
	In aqueous solution, A, B, C and D are all colourless but E is dark blue.
	A reagent (X) is available that reacts rapidly with E . This means that, if a small amount of X is included in the initial reaction mixture, it will react with any E produced until all of the X has been used up.
	Explain, giving brief experimental details, how you could use a series of experiments to determine the order of this reaction with respect to A . In each experiment you should obtain a measure of the initial rate of reaction.
	[6 marks]

0 7

Turn over ►

02	The elements	s sodium t	o sulfur in Perio	od 3 all react w	/ith oxyge	en to form oxid	es.
02.1	Give an equa sodium is hea		wo observation	is made for the	e reactior	that occurs w	hen
		j					[2 marks]
	Equation						
	•						
	Observation 2	2					
02.2	Give an equa phosphorus i		ne observation	made for the	reaction	that occurs wh	en
	phosphorus	5 neated ii	голуден.				[2 marks]
	Equation						
	Observation						
0 2 . 3	The melting provide the terminal of te	Doints of tr	ne highest oxide	es of the eleme	ents sodi	um to sulfur ar	e snown in
				Table 2			
				Lisboot ovi	do of		
		sodium	magnesium	Highest oxi aluminium	silicon	phosphorus	sulfur
	Melting point/K	1548	3125	2345	1883	573	290
	Explain the ir	ncrease in	melting point fr	rom sodium ox	ide to ma	agnesium oxide	e. [2 marks]

02.4	Explain why the melting point of the oxide of silicon is much higher than that highest oxide of phosphorus.	t of the [3 marks]
02.5	A sample of the highest oxide of phosphorus was prepared in a laboratory.	
	Describe a method for determining the melting point of the sample. State how the result obtained could be used to evaluate its purity.	[3 marks]

Cyclohexene (boiling point = 83 °C) can be prepared by the dehydration of cyclohexanol (boiling point = 161 °C) using concentrated phosphoric acid.
Image: OH Im

- The student heated the mixture and collected the liquid that distilled at temperatures below 100 °C
- The distillate was poured into a separating funnel and washed by shaking with sodium carbonate solution.
- Periodically, the separating funnel was inverted and the tap opened.
- The aqueous layer was discarded and the final organic product was dried using anhydrous calcium chloride.
- After the product was dried, the drying agent was removed by filtration under reduced pressure.

0 3.1	The student collected 5.97 g of cyclohexene in the experiment.
	Calculate the percentage yield of cyclohexene. [3 marks]
	Percentage yield%
03.2	Describe a test-tube reaction, on the product, to show that the cyclohexanol had been dehydrated.
	State what you would observe. [2 marks]
0 3.3	Suggest why sodium carbonate solution was used to wash the distillate.
	[1 mark]
03.4	Explain why it is important to open the tap of the separating funnel periodically.
	[1 mark]
	Question 3 continues on the next page

0 3.5 Give a property of anhydrous calcium chloride, other than its ability to absorb water, that makes it suitable as a drying agent in this preparation. [1 mark] 0 3. 6 Describe the apparatus used to remove the drying agent by filtration under reduced pressure. Your description of the apparatus can be either a labelled diagram or a description in words. [2 marks]

0 3.7	A sample of cyclohexene has been contaminated with cyclohexanol. The cyclohexene can be separated from the cyclohexanol by column chromatography Silica gel is used as the stationary phase and hexane as the mobile phase.	<i>.</i>
	Explain why cyclohexene has a shorter retention time than cyclohexanol.	arks]
	• 	
03.8	Explain how an infrared spectrum would confirm that the cyclohexene obtained fr the chromatography column did not contain any cyclohexanol.	om mark]
	Turn over for the next question	

ſ

Turn over ►

04.4	Suggest and explain another change to the experiment that would decrease the percentage uncertainty in the use of the same thermometer. [2 mark]	s]
04.5	A second student completed an experiment to determine the enthalpy of neutralisation for the reaction between ethanedioic acid solution (HOOCCOOH) and potassium hydroxide solution.	on
	The student added 25 cm ³ of 0.80 mol dm ⁻³ ethanedioic acid solution to 75 cm ³ of 0.60 mol dm ⁻³ potassium hydroxide solution. The temperature increased by 3.2 °C	
	Give an equation for the reaction between ethanedioic acid solution and potassium hydroxide solution. Calculate the enthalpy change (ΔH) per mole of water formed in this reaction. Assume that the specific heat capacity of the reaction mixture is $4.2 \text{ J K}^{-1} \text{ g}^{-1}$ Assume that the density of the reaction mixture is 1.00 g cm^{-3} [5 mark	s]
	Equation	
	ΔH kJ mol ⁻¹	

0 4. **6** In a similar experiment to that in Question **04.5**, the enthalpy of neutralisation for the reaction between sulfuric acid and potassium hydroxide solution was found to be $-57.0 \text{ kJ mol}^{-1}$ per mole of water formed.

Suggest an explanation for the difference between this value and your answer to Question 04.5. (If you were unable to obtain an answer to Question 04.5 you should assume a value of –28.5 kJ mol⁻¹. This is not the correct answer.) [2 marks]

Turn over for Section B

Section B			
	Answer a	II questions in this section.	
-	ne answer per question is allowed		
For eac	ch answer completely fill in the circ	cle alongside the appropriate answer.	
CORREC	CT METHOD • WRONG METHO		
lf you v	vant to change your answer you n	nust cross out your original answer as shown.	
If you v as show		usly crossed out, ring the answer you now wish to se	elect
	\bowtie		
	ay do your working in the blank sp use additional sheets for this wor	ace around each question but this will not be marke king.	d.
0 5	Which can be both an empirical	and molecular formula of a stable compound?	
		[1	mark]
	A CH ₂ O	0	
	B P ₄ O ₁₀	0	
	C NH ₂	0	
	D CH ₃		

IB/M/Jun18/7405/3

1 2 Solutions of two compounds, W and X, react together in the presence of a soluble catalyst, Y, as shown in the equation $2\mathbf{W} + \mathbf{X} \rightarrow \mathbf{Z}$ When the concentrations of W, X and Y are all doubled, the rate of reaction increases by a factor of four. Which is a possible rate equation for this reaction? [1 mark] **A** rate = $k [W]^2 [X]$ \bigcirc **B** rate = $k [W]^2 [Y]$ \bigcirc **C** rate = k [**X**] [**Y**] \bigcirc **D** rate = k [**X**] [**Z**] \bigcirc 1 3 A series of experiments was carried out to find the order of reaction with respect to reactant X. In these experiments, only the concentration of X was changed. Which graph would show that the reaction is second-order with respect to X? [1 mark] В rate of D reaction concentration of X Α \bigcirc В \bigcirc С \bigcirc D \bigcirc

1 6	How many peaks are there in the ¹³ C NMR spectrum of 1,4-dimethylbenzene?			[1 mark]
	A 8	0		
	B 4	0		
	C 3	0		
	D 2	0		
1 7	Which of these Period 3 elements	s has the highest mel	ting point?	[1 mark]
	A Aluminium	0		
	B Phosphorus	0		
	C Sodium	0		
	D Sulfur	0		
1 8	Chlorine reacts with cold, dilute, a	aqueous sodium hydr	oxide.	
	Which is a complete list of the pro	oducts?		[1 mark]
				[i mark]
	A Sodium chloride, sodium chlor	ate(I) and water		
	B Sodium chlorate(I) and water			
	C Sodium chloride, sodium chlor	ate(V) and water	0	
	D Sodium chloride and sodium c	hlorate(I)	0	

19	Which products are formed when magnesium reacts with steam?	[1 mark]
	A Magnesium hydroxide and hydrogen	0
	B Magnesium hydroxide and oxygen	0
	C Magnesium oxide and hydrogen	0
	D Magnesium oxide and oxygen	0
2 0	Which observation would confirm that ammonia gas is released when	solid ammonium
	chloride is warmed with solid calcium hydroxide?	[1 mark]
	A Damp blue litmus paper turns red when touched onto the solid mixture.	0
	B Damp red litmus paper turns blue when touched onto the solid mixture.	0
	C Damp blue litmus paper turns red when held just above the solid mixture.	0
	D Damp red litmus paper turns blue when held just above the solid mixture.	0
	Turn over for the next question	

Which ion **cannot** catalyse the reaction between iodide (I^-) and peroxodisulfate ($S_2O_8^{2-}$)? 29 Use the data below to help you answer this question. [1 mark] E^o/V **Half-equation** $S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$ +2.01 Co^{3^+} + $e^- \rightarrow \text{Co}^{2^+}$ +1.82 $Fe^{3+} + e^- \rightarrow Fe^{2+}$ +0.77 $I_2 + 2e^- \rightarrow 2I^ Cr^{3+} + e^- \rightarrow Cr^{2+}$ +0.54 -0.41 **A** Co²⁺ \bigcirc **B** Cr²⁺ \bigcirc **C** Fe²⁺ \bigcirc D Fe³⁺ \circ 3 0 Which species has a shape that is influenced by the presence of one or more lone pairs of electrons around the central atom? [1 mark] A AlCl₃ \bigcirc **B** ClF₃ \bigcirc $C IF_6^+$ \bigcirc $\mathbf{D} \operatorname{PCl}_6^ \bigcirc$ Turn over for the next question

3 1	Some 1.0 mol dm ⁻³ solu	tions were mixed using equal volumes of each	solution.
	Which pair of solutions w	would give the greatest mass of solid?	[1 mark]
			[T mark]
	A $Ba(OH)_2$ and $MgCl_2$		0
	B $Ba(OH)_2$ and $MgSO_4$		0
	\mathbf{C} Ba(OH) ₂ and NaCl		0
	D Ba(OH) ₂ and Na ₂ SO ₄	i de la constante d	0
· · · · · · · · · · · · · · · · · · ·			
3 2		be used in a titration to find the concentration of 0 mol dm ⁻³ hydrochloric acid?	a solution of
			[1 mark]
	A Thymol blue	(pH range 1.2-2.8)	0
	B Bromophenol blue	(pH range 3.0-4.6)	0
	C Phenol red	(pH range 6.8-8.4)	0
	D Phenolphthalein	(pH range 8.3–10.0)	0
3 3	Lattice enthalpy values of based on a perfect ionic	can be obtained from Born–Haber cycles and by model.	y calculations
	Which compound shows	s the greatest percentage difference between th	
			[1 mark]
	A CsF	0	
	B Csl	\bigcirc	
	C LiF	0	
	D Lil	0	

END OF QUESTIONS

available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

