Please write clearly in	block capitals.
Centre number	Candidate number
Surname	NODEL ANSWERS
Forename(s)	
Candidate signature	

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 12 June 2018

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on the blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3	et angelen. Nganggangganggangganggangganggangganggan	
4		
5		
6		
7		
8		
9		
10		
11		
TOTAL		

	Answer all questions in the spaces provided.
0 1	This question is about the reactions of alkanes.
0 1.1	Alkanes can be used as fuels.
	Give an equation for the combustion of heptane (C ₇ H ₁₆) in an excess of oxygen. [1 mark]
	$C_7H_{16} + 11 O_2 \rightarrow 7CO_2 + 8H_2O$
0 1.2	Heptane can be obtained from the catalytic cracking of hexadecane ($C_{16}H_{34}$) at a high temperature.
	Identify a suitable catalyst for this process. Give one condition <u>other than high temperature</u> . Give an equation for the catalytic cracking of one molecule of hexadecane to produce one molecule of heptane, one molecule of cyclohexane and one other product. [3 marks]
	Catalyst <u>2 colife</u> or alumnosilicate
	Condition <u>Slight pressure</u>
	Equation $C_{16}H_{34} \rightarrow C_7H_{16} + C_6H_{12} + C_3H_6$
0 1.3	Alkanes can be used in free-radical substitution reactions to produce halogenoalkanes.
	Give equations for the propagation steps in the reaction of butane to form 2-chlorobutane.
3	[2 marks]
	$CH_3CH_2CH_2CH_3 + CI \rightarrow CH_3CH_2CHCH_3 + HCI$
	$CH_3CH_2CHCH_3 + Cl_2 \rightarrow CH_3CH_2CHCICH_3 + Cl$

Halogenoalkanes are useful compounds in synthesis. A reaction pathway is shown. 0 2 Reaction 1 CH₂(OH)CH(CH₃)CH₂Br CH₂(OH)CH(CH₃)CH₂OH NaOH Reaction 2 Reaction 3 Compound Z Compound Y $C_4H_6O_2$ Give the IUPAC name for $CH_2(OH)CH(CH_3)CH_2Br$ 0 2 . 1 [1 mark] 3-promo - (2) methyl propan - 1-01 0 2 2 2 Reaction 1 occurs via a nucleophilic substitution mechanism. Explain why the halogenoalkane is attacked by the nucleophile in this reaction. [3 marks] electronegative than carbon · bromine More 21 MI becomes partially positive (s+) Carbon L2 on nucleophile attacks attracted to M3 lone positive car bon Po

0 3 The oxidation of propan-1-ol can form propanal and propanoic acid. The boiling points of these compounds are shown in Table 1. Table 1 Compound Boiling point / °C propan-1-ol 97 propanal 49 propanoic acid 141 In a preparation of propanal, propan-1-ol is added dropwise to the oxidising agent and the aldehyde is separated from the reaction mixture by distillation. Explain, with reference to intermolecular forces, why distillation allows propanal to be 0 3 . 1 separated from the other organic compounds in this reaction mixture. [3 marks] Propanal has diple-dipole forces HI molecules Propan-1 -0 propanoic acid ave H2 M3 Dipole - dipole fixes meater ave lower boil .. has a propanal wil porate

0 3.2	Give two ways of maximising the yield of propanal obtained by distillation of the reaction mixture.
	[2 marks]
	1 keep temperature of mixture below the
	1 keep temperature of mixture below the boiling point of propon-1-01 [below 97.C
	<u> </u>
	2 cool the distillate collecting vessel
0 3.3	Describe how you would carry out a simple test-tube reaction to confirm that the sample of propanal obtained by distillation does not contain any propanoic acid.
	[2 marks]
	· add sodium (hydrogen) carbonate to a sample MI
	of the distillate
	· efferrescence would occur if propanoic acid Ma
	was present
	Alternatives: blue litnus -> red
	Question 3 continues on the next page
	Turn over ►

	9	Do not write outside the box
03.5	A mixture of isomeric alkenes is produced when pentan-2-ol is <u>dehydrated</u> in the presence of hot concentrated sulfuric acid. Pent-1-ene is one of the isomers produced.	
	Name and outline a mechanism for the reaction producing pent-1-ene. [4 marks]	_
	Name of mechanism elimination	MI
	Mechanism H H $H - C - C - C H_2 C H_3 C H_3$	
	$H - C - C - CH_2 CH_3 CH_3$	Н2
		M3
	$H = C = CH^{2} (H^{2} (H^{3})$ $H = C = CH^{2} (H^{2} (H^{3})$	Мц
	$H^{+} C = C^{+} H^{+} (H_{2}(H_{3}$	
03.6	A pair of stereoisomers is also formed in the reaction in Question 03.5 .	
	Name the <u>less polar</u> stereoisomer formed. Explain how <u>this type</u> of stereoisomerism arises. [2 marks]	
	Name E-pent-2-ene	И
	Explanation	
	· cectored otabon of the c-c	both for ND
	. each carbon in the double bond has different	
	groups attached	16

0 4 Compounds A and B react together to form an equilibrium mixture containing compounds C and D according to the equation
$2A + B \rightleftharpoons 3C + D$
0 4 . 1 A beaker contained 40 cm ³ of a 0.16 mol dm ⁻³ aqueous solution of A . 9.5 × 10 ⁻³ mol of B and 2.8 × 10 ⁻² mol of C were added to the beaker and the mixture was left to reach equilibrium. The equilibrium mixture formed contained 3.9×10^{-3} mol of A .
Calculate the amounts, in moles, of B , C and D in the equilibrium mixture.
[5 marks]
moles $2A$ + $B \rightleftharpoons 3C$ + D Initially 0.16×40×10 ⁻³
= 6.4×10-3 9.5×10-3 2.8×10-2 0
$\frac{males}{eqm} = 3.9 \times 10^{-3}$
change in moles A: 6.4×10-3 - 3.9×10-3 = 2.5×10-3
change in hudles B: 9.5×10 ⁻³ - 1.25×10 ⁻³ = 8.25×10 ⁻³
change in moles C: 2.8×10-2 + 3.75×10-3 = 3.18×10-2
change in moles D: 0 + 1-25×10-3 = 1.25×10-3
Amount of B $8 \cdot 25 \times 10^{-3}$ mol
Amount of C 3.18×10^{-2} mol
Amount of D 1.25×10^{-3} mol
0 4 . 2 Give the expression for the equilibrium constant (K_c) for this equilibrium and its units.
[2 marks]
$\kappa_{c} = \frac{\left[c\right]^{3}\left[D\right]}{\left[A\right]^{2}\left[B\right]} = \frac{\left(\text{mol dm}^{-3}\right)^{3}\left(\text{mol dm}^{-3}\right)}{\left(\text{mol dm}^{-3}\right)^{2}\left(\text{mol dm}^{-3}\right)}$
[A] ² [B] (melder 3) ² (melder 3)
Units Moldm-3
Units WO CM

Bromate(V) ions and bromide ions react in acid conditions according to the equation

$$BrO_{3}^{-}(aq) + 5Br^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(I)$$

0 5.1

A series of experiments was carried out at a given temperature. The results were used to deduce the rate equation for the reaction.

$$rate = k [BrO_3^{-}][Br^{-}][H^{+}]^2$$

Table 2 shows an incomplete set of results.

Experiment	Initial [BrO₃ [−]] / mol dm ^{−3}	Initial [Br [−]] / mol dm ^{−3}	Initial [H ⁺] / mol dm ^{−3}	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	0.10	0.20	0.30	2.4 × 10 ^{−2}
2	0.15	0.20	0.30	3.6 × 10 ^{−2}
3	0.20	0.40	0.50	0.26
4	0.10	0.10	0.46	2.7 × 10 ⁻²

Table 2

Use the data from Experiment 1 to calculate a value for the rate constant, k, at this temperature and give its units.

Give your answer to an appropriate number of significant figures.

 $\begin{aligned} & \mathcal{K} = \frac{\text{rate}}{[Bro_{3}][Br^{-}][H^{+}]^{2}} & [3 \text{ marks}] \\ & = \frac{2 \cdot 4 \times 10^{-2}}{0 \cdot 1 \times 0 \cdot 2 \times 0 \cdot 3^{2}} & \frac{\text{mat} \text{ dm}^{-3} \text{ s}^{-1}}{(\text{mal} \text{ dm}^{-3})(\text{mal} \text{ dm}^{-3})^{1}} & \text{M}(1 + 1) \\ & \frac{13}{(2 \times f_{1})} & \text{Units} \frac{\text{mal}}{2} \text{ dm}^{-3} \text{ dm}^{-3} \text{ s}^{-1} \\ & \text{Math Mathematical} \\ \end{aligned}$

0 5.2 Complete Table 2. Space for working $2: [Br \circ_3] = iate + ibr \circ_1 [H+]^2 = \frac{3 \cdot 6 \times 10^{-2}}{13 \times 0 \cdot 2 \times 0 \cdot 3^2} = 0.15$ 3: rate = $13 \times 0.2 \times 0.4 \times 0.5^2 = 0.26$ $4: [H+] = \int \frac{rate}{k[Br \circ_1][Br]} = \int \frac{2.7 \times 10^{-3}}{13 \times 0.1 \times 0.1} = 0.46$ Question 5 continues on the next page

0 5 . 3 A second series of experiments was carried out to investigate how the rate of the reaction varies with temperature.

CHALLENGING The results were used to obtain a value for the activation energy of the reaction, E_a

Identical amounts of reagents were mixed at different temperatures. The time taken, t, for a fixed amount of bromine to be formed was measured at different temperatures.

The results are shown in Table 3.

	X	Table 3		y
Temperature, <i>T</i> / K	$\frac{1}{T}/K^{-1}$	Time, <i>t</i> / s	$\frac{1}{t} / s^{-1}$	$\ln \frac{1}{t}$
286	3.50 × 10 ⁻³	54	1.85 × 10 ⁻²	-3.99
295	3.39 × 10 ⁻³	27	3.70 × 10 ^{−2}	- 3.30
302	3.31 × 10	15	6.67 × 10 ⁻²	-2.71
312	3.21 × 10 ^{−3}	8	1.25 × 10 ^{−1}	-2.08

Complete Table 3.

[2 marks]

The Arrhenius equation can be written as

$$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + C_1$$

In this experiment, the rate constant, k, is directly proportional to $\frac{1}{t}$

Therefore

$$\ln \frac{1}{t} = -\frac{E_a}{R} \left(\frac{1}{T} \right) + C_2$$

where C_1 and C_2 are constants.

Use values from **Table 3** to plot a graph of $\ln \frac{1}{t}$ (y axis) against $\frac{1}{T}$ on the grid.

Use your graph to calculate a value for the activation energy, in kJ mol⁻¹, for this reaction.

The value of the gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[6 marks]

0 5.

0 6 2	The enthalpy of hydrogenation of cyclohexa-1,3-diene is not exactly double that of cyclohexene.	
CHIPLEISAN	Suggest a value for the enthalpy of hydrogenation of cyclohexa-1,3-diene and justify	
	your value. [3 marks]	
	· (If double : 2x-120 = -240)	
	Not exactly double so suggest - 200 KT moi - M	1
	(large) - 239 to - 121)	
	. Two double bonds separated by single bond MS	2
	· allows some delocation M3	
	9	
	Turn over ►	

		box
0 7.2	The organic product in Question 07.1 can be converted into the alcohol shown.	
	H CH ₂ CH ₂ CH ₃	
	ОН	
	Give the IUPAC name of the <u>alcohol.</u> Give the reagent needed for this reaction and name the mechanism. [3 marks]	
	IUPAC name 1-phenylpropan-1-01	
	Reagent NaBHy/WAIHy or Howith Ni	
	Name of mechanism <u>nucleophilic</u> or addition/hydrogenate	nôn
0 7.3	The alcohol shown in Question 07.2 reacts with ethanoyl chloride to form an ester.	
	Describe what would be observed when the alcohol reacts with ethanoyl chloride. Name the mechanism for the reaction to form the ester. Draw the structure of the ester.	
	[3 marks]	
	Observation Misty steamy fumes	
	(from HCI)	
	Name of mechanism (nucleophilic) addition - elimination	
	Structure of ester	
	Clt 3	
	O CH2	
	$CH_3 - C - 0 - C - O$	
	H	
	(acid on LHS) (alcohol part on RHS)	
9		10
	Turn over for the next question	

This question is about amines.

N-H no N-H

orimary amine	tertiary amine	nitrile
С	В	A

10.5	A student dissolves a few drops of propylamine in 1 cm ³ of water in a test tube. Give an <u>equation</u> for the reaction that occurs. <u>Describe what is observed</u> when Universal Indicator is added to this solution. [2 marks]
	Equation <u>(H₃(H₁(H₁NH₂ + H₂) = CH₃(H₂(H₂NH₃ + OH Observation <u>turn blue</u></u>
10.6	Phenylamine can be prepared by a process involving the reduction of nitrobenzene using tin and an excess of hydrochloric acid. Give an equation for the reduction of nitrobenzene to form phenylamine. Use [H] to represent the reducing agent. Explain why an aqueous solution is obtained in this reduction even though phenylamine is insoluble in water. [2 marks]
	Equation $C_6H_5NO_2 + 6[H] \rightarrow C_6H_5NH_2 + 2H_2O$ Explanation phenylamine exists as an ionic salt $C_6H_5NH_3$

1 1	There are several isomers with the molecular formula $C_6H_{16}N_2$
11.1	One isomer is shown.
	$H_3C - CH_2$
	$\begin{array}{c} H_{3}C-CH_{2} \\ H_{3}C-CH_{2} \end{array} N-CH_{2}-CH_{2}-NH_{2} \end{array}$
	Give the number of peaks in the ¹³ C NIMD are stored for the
	Give the number of peaks in the ^{13}C NMR spectrum of this isomer.
	State and explain the splitting pattern of the peak for the hydrogens labelled a in its ¹ H NMR spectrum.
	[3 marks]
	Number of ¹³ C peaks
	Splitting pattern <u>triplet</u> Explanation <u>adjacent</u> C has two Hs
61	Explanation adjacent C has two Hs
1 1.2	Draw the structure of the isomer of $C_6H_{16}N_2$ used to make nylon 6,6
	[1 mark]
	$H_N - (CH_2)_6 NH_2$
	Question 11 continues on the next page

