

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 4 June 2019

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

box

01.3	The enthalpy of lattice for by experiment. The value obtained by ca Deduce what these value	Iculation using the p	erfect ionic model i	s –582 kJ mol ^{–1}	rk]
0 1 4	Use data from Table 2 to				
	Csl(s)	$) \rightarrow Cs(s) + \frac{1}{2}I_2(s)$	∆ <i>H</i> ° = +337 kJ m	ol ⁻¹	
		Table	2		
		Csl(s)	Cs(s)	l ₂ (s)	
	S ^e / J K ⁻¹ mol ⁻¹	130	82.8	117	
				[4 marl	<s]< td=""></s]<>

ſ

Do not write

outside the box

0 3	This question is about periodicity, the Period 4 elements and their compounds.	Do not write outside the box
03.1	State the meaning of the term periodicity. [1 mark	-
		_
03.2	Identify the element in Period 4 with the highest electronegativity value. [1 mark]
03.3	Identify the element in Period 4 with the largest atomic radius. Explain your answer. [3 marks]	1
	Element	_
	Explanation	-
		_
		_
0 3.4	The equations for two reactions of arsenic(III) oxide are shown.	
	$As_2O_3 + 6HCl \rightarrow 2AsCl_3 + 3H_2O$	
	$As_2O_3 + 6NaOH \rightarrow 2Na_3AsO_3 + 3H_2O$ Name the property of arsenic(III) oxide that describes its ability to react in these two	
	ways. [1 mark	3
		_
03.5	Complete the equation for the formation of arsenic hydride. [1 mark	
	$As_2O_3 + Zn + HNO_3 \rightarrow AsH_3 + Zn(NO_3)_2 + H_2O$	7

Turn over ►

box

04.4	Give the formula of Precipitate M and state its colour. [2 marks]	Do not writ outside the box
	Formula of M	
04.5	Transition metal complexes have different shapes and many show isomerism.	
	Describe the different shapes of complexes and show how they lead to different types of isomerism. Use examples of complexes of cobalt(II) and platinum(II).	
	You should draw the structures of the examples chosen. [6 marks]	

8

 This question is about some Group 7 compounds. Solid sodium chloride reacts with concentrated sulfuric acid. Give an equation for this reaction. State the role of the sulfuric acid in this reaction. Equation Role Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction give an equation give one other observation 	2 marks]
Give an equation for this reaction. State the role of the sulfuric acid in this reaction. Equation Role Similar Solution Role Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction • give an equation	2 marks]
State the role of the sulfuric acid in this reaction. Equation Role State the role of the sulfuric acid in this reaction. For this reaction o give an equation For this reaction o give an equation Equation State the role of the sulfuric acid in this reaction. For this reaction o give an equation For this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction. For this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in th	2 marks]
Role 0 5.2 Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction • give an equation	
 0 5. 2 Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction give an equation 	
 concentrated sulfuric acid. For this reaction give an equation 	
give an equation	
 state the role of the sulfuric acid. 	3 marks]
Equation	
Observation	
Role	
0 5 . 3 Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.	
$3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$	
Give the oxidation state of chlorine in NaClO $_3$ and in NaCl	[1 mark]
NaClO ₃	

) 5.	4 State, in terms of redox, what happe	ens to chlorine in the reaction in Question 05.3 . [1 mark]	Do r outs
5.	 5 Solution Y contains two different ne To a sample of solution Y in a test to silver nitrate solution then an excess of dilute nitric acid finally an excess of concentrated The observations after each addition 	ube a student adds d ammonia solution.	
Γ_	Tabl	e 3	
F	Reagent added to solution Y	Observation	
s	ilver nitrate solution	cream precipitate containing compound D and compound E	
e	excess dilute nitric acid	cream precipitate D and bubbles of gas F	
e	excess concentrated ammonia solution	colourless solution containing complex ion ${f G}$	
	Give the formulas of D, E and F . Give an ionic equation to show the Give an equation to show the conve		
	Formula of D		
	Formula of E		
	Formula of F		
	lonic equation to form E		
	Equation to show the conversion of	D into G	

		Do not write outside the
06	A student does an experiment to determine the percentage of copper in an alloy.	box
	The student	
	 reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions) 	
	 pours the solution into a volumetric flask and makes the volume up to 250 cm³ with distilled water 	
	 shakes the flask thoroughly 	
	 transfers 25.0 cm³ of the solution into a conical flask and adds an excess of potassium iodide 	
	 uses exactly 9.00 cm³ of 0.0800 mol dm⁻³ sodium thiosulfate (Na₂S₂O₃) solution to react with all the iodine produced. 	
	The equations for the reactions are	
	$2Cu^{2+} + 4l^- \rightarrow 2Cul + l_2$	
	$2S_2O_3^{2-} + I_2 \rightarrow 2I^- + S_4O_6^{2-}$	
0 6.1	Calculate the percentage of copper by mass in the alloy.	
	Give your answer to the appropriate number of significant figures. [6 marks]	
	% copper	
	··	

[4 marks]

Calculate the volume, in cm $^{3},$ that 5.00 g of iodine vapour occupies at 185 $^{\circ}\text{C}$ and 100 kPa

The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Give your answer to 3 significant figures.

Volume _____ cm³

0 7	Sulfur trioxide decomposes on heating to form an equilibrium mixture containing	Do not write outside the box
	sulfur dioxide and oxygen.	
	$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$	
0 7.1	A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given	
	temperature. The equilibrium mixture contained 6.08 g of sulfur dioxide.	
	Calculate the mass, in g, of oxygen gas in the equilibrium mixture.	
	[2 marks]	
	Mass9	
	Question 7 continues on the next page	
	Turn over ►	

Do not write outside the box

0 7 . 2 A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 K

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

Table 4

The amounts of each substance in the equilibrium mixture are shown in Table 4.

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\rm p}$ = 7.62 x 10^5 Pa

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant, K_p Calculate the total pressure, in Pa, of this equilibrium mixture.

[4 marks]

Mole fraction SO ₃	
Mole fraction SO ₂	
Mole fraction O ₂	

 K_{p}

Total pressure

Do not write outside the For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5$ Pa For this reaction at 500 K the equilibrium constant, $K_p = 3.94 \times 10^4$ Pa box 0 7 . 3 Explain how this information can be used to deduce that the forward reaction is endothermic. [2 marks] 0 7 . 4 Use data from Question 07.3 to calculate the value of K_p , at 500 K, for the equilibrium represented by this equation. Deduce the units of K_p $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$ [2 marks] *К*_р_____ 10 Units _____ Turn over for the next question

	This supption is shout structure and	handing	Do not write outside the box
0 8	This question is about structure and	bonding.	
0 8 . 1	Draw a diagram to show the stronges ethanol (C_2H_5OH) in the liquid phase	st type of interaction between two molecules	of
	Include all lone pairs and partial char	ges in your diagram. [3 ma	arkel
		[o m	arkoj
0 8 2	Methoxymethane (CH ₃ OCH ₃) is an is	somer of ethanol.	
	Table 5 shows the boiling points of e	thanol and methoxymethane.	
		Table 5	
	Compound	Boiling point / °C	
	ethanol	78	
	ethanol methoxymethane	78 -24	
	methoxymethane	-24	nte
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]
	methoxymethane	-24 involved, explain the difference in boiling poi	nts. arks]

	Extra space		Do not write outside the box
08.3		Cl_3 molecule and the shape of the ClF_4^- ion. ectrons that influence the shapes.	
		ygen atom is attached to the phosphorus atom by a electrons from phosphorus.	
	Name each shape.		
	Suggest a value for the bor	nd angle in ClF₄⁻	
	Shape of POCl₃	Shape of ClF₄ [−]	arks]
	Name of shape of $POCl_3$		
	Bond angle in ClF_4^-		11
Turn over for the next question			

Turn over ►

09	This question is about different pH values.	Do not write outside the box
09.1	For pure water at 40 $^{\circ}$ C, pH = 6.67 A student thought that the water was acidic.	
	Explain why the student was incorrect.	
	Determine the value of K_w at this temperature. [4 marks]	
	Explanation	

K _w	mol ² dm ⁻⁶
----------------	-----------------------------------

Question 9 continues on the next page

Turn over ►

IB/G/Jun19/7405/1

Tick (\checkmark) one box.[1 mark]IndicatorpH rangeTick (\checkmark) one boxmethyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$		Use Figure 4 to determine the va			
3 Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick (✓) one box. Indicator pH range Tick (✓) one box methyl orange 3.1 – 4.4 bromothymol blue 6.0 – 7.6 cresolphthalein 8.2 – 9.8		Show your working.		[3	marks]
3 Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick (\checkmark) one box. [1 mark] Indicator pH range Tick (\checkmark) one box methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$					
3 Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick (\checkmark) one box. [1 mark] Indicator pH range Tick (\checkmark) one box methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$					
3 Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick (✓) one box. Indicator pH range Tick (✓) one box methyl orange 3.1 – 4.4 bromothymol blue 6.0 – 7.6 cresolphthalein 8.2 – 9.8					
Tick (\checkmark) one box. [1 mark] Indicator pH range Tick (\checkmark) one box methyl orange $3.1 - 4.4$ 1 bromothymol blue $6.0 - 7.6$ 1 cresolphthalein $8.2 - 9.8$ 1			K _a	mol	dm⁻³
Tick (\checkmark) one box.[1 mark]IndicatorpH rangeTick (\checkmark) one boxmethyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$					
[1 mark] Indicator pH range $Tick (\checkmark)$ one box methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$	3		nost appropriate for the r	reaction in Question 09	.2 ?
methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$				Ľ	1 markl
bromothymol blue $6.0 - 7.6$ cresolphthalein $8.2 - 9.8$				-	i markj
cresolphthalein 8.2 – 9.8		Indicator	pH range		
indigo carmine $11.6 - 13.0$		methyl orange	3.1 – 4.4		
		methyl orange bromothymol blue	3.1 – 4.4 6.0 – 7.6		
		methyl orange bromothymol blue	3.1 – 4.4 6.0 – 7.6		
		methyl orange bromothymol blue cresolphthalein	3.1 - 4.4 6.0 - 7.6 8.2 - 9.8		
Question 9 continues on the next page		methyl orange bromothymol blue cresolphthalein indigo carmine	3.1 - 4.4 6.0 - 7.6 8.2 - 9.8 11.6 - 13.0	Tick (✓) one box Image: Second sec	
Question 9 continues on the next page		methyl orange bromothymol blue cresolphthalein indigo carmine	3.1 - 4.4 6.0 - 7.6 8.2 - 9.8 11.6 - 13.0	Tick (✓) one box Image: Second sec	
Question 9 continues on the next page		methyl orange bromothymol blue cresolphthalein indigo carmine	3.1 - 4.4 6.0 - 7.6 8.2 - 9.8 11.6 - 13.0	Tick (✓) one box Image: Second sec	
Question 9 continues on the next page		methyl orange bromothymol blue cresolphthalein indigo carmine	3.1 - 4.4 6.0 - 7.6 8.2 - 9.8 11.6 - 13.0	Tick (✓) one box Image: Second sec	
Question 9 continues on the next page		methyl orange bromothymol blue cresolphthalein indigo carmine	3.1 - 4.4 6.0 - 7.6 8.2 - 9.8 11.6 - 13.0	Tick (✓) one box Image: Second sec	

Turn over ►

0 9. **4** A student prepared a buffer solution by adding 0.0136 mol of a salt KX to 100 cm^3 of a 0.500 mol dm⁻³ solution of a weak acid HX and mixing thoroughly.

The student then added 3.00×10^{-4} mol of potassium hydroxide to the buffer solution.

Calculate the pH of the buffer solution after adding the potassium hydroxide.

For the weak acid HX at 25 °C the value of the acid dissociation constant, $K_a = 1.41 \times 10^{-5} \text{ mol dm}^{-3}$.

Give your answer to two decimal places.

[6 marks]

Do not write outside the

box

24

	23	
09.5	A buffer solution has a constant pH even when diluted.	Do not write outside the box
	Use a mathematical expression to explain this. [1 mark]	
	END OF QUESTIONS	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7405/1