

Please write clearly in	ı block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 11 June 2019

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
TOTAL		

	D
Answer all questions in the spaces provided.	Do not write outside the box
This question is about amines.	
Give an equation for the preparation of 1,6-diaminohexane by the reaction of 1,6-dibromohexane with an excess of ammonia. [2 marks]	
Complete the mechanism for the reaction of ammonia with 6-bromohexylamine to form 1,6-diaminohexane.	
Suggest the structure of a cyclic secondary amine that can be formed as a by-product in this reaction. [4 marks]	
Mechanism	
NH ₃	
Br NH2	

Cyclic secondary amine

0 1

1.

0 1.2

1

0

0 1.3	1,6-Diaminohexane can also be formed in a two-stage synthesis starting from	Do not write outside the box
	1,4-dibromobutane. Suggest the reagent and a condition for each stage in this alternative synthesis.	
	[3 marks] Stage 1 reagent and condition	
	Stage 2 reagent and condition	
0 1.4	Explain why 3-aminopentane is a stronger base than ammonia. [2 marks]	
0 1 . 5	Justify the statement that there are no chiral centres in 3-aminopentane. [1 mark]	
		12
	Turn over for the next question	

02.3	The cyclohexene separated in Question 02.2 was obtained as a cloudy liquid. The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.
	Give one observation that the student made to confirm that the cyclohexene was dry. [1 mark]
02.4	In this preparation, the student added an excess of concentrated phosphoric acid to 14.4 g of cyclohexanol ($M_r = 100.0$). The student obtained 4.15 cm ³ of cyclohexene ($M_r = 82.0$). Density of cyclohexene = 0.810 g cm ⁻³ Calculate the percentage yield of cyclohexene obtained.
	Give your answer to the appropriate number of significant figures. [5 marks]
	% yield
	Question 2 continues on the next page
	Turn over ►
	IB/G/Jun19/7405/2

		Do not writ
03	The outer layers of some golf balls are made from a polymer called polyisoprene. The isoprene monomer is a non-cyclic branched hydrocarbon that contains 88.2 % carbon by mass. The empirical formula of isoprene is the same as its molecular formula.	outside the box
0 3.1	Deduce the molecular formula of isoprene and suggest a possible structure.	
	[4 marks]	
	Molecular formula	
	Structure	
	Question 3 continues on the next page	

Turn over 🕨

0 3.3	A second polymer in the mixture has a repeating unit with the structure shown.	Do not write outside the box
	$-CH_2$ CH_2 $-CH_2$	
	The third polymer in the mixture is a stereoisomer of this polymer.	
	Draw the structure of the repeating unit of the third polymer.	
	Give a reason why this type of stereoisomerism arises. [2 marks]	
	Repeating unit	
	Reason	
0 3.4	Golf balls recovered from lakes and ponds can be used again even after being in water for several years.	
	Explain why these golf balls do not biodegrade. [1 mark]	
		9
	Turn over for the next question	

Do not write outside the box

Substances **P** and **Q** react in solution at a constant temperature.

in concentration of **P** over the first five seconds of the reaction.

Time after

The data obtained are shown in Table 1.

Experiment

Та	ble	1

Concentration / mol dm⁻³

The initial rate of reaction was studied in three experiments by measuring the change

mixing / s	Р	Q	
0	1.00 × 10 ⁻²	1.25 × 10 ^{−2}	
5.0	0.92×10^{-2}	not measured	
0	2.00 × 10 ⁻²	1.25×10^{-2} not measured	
5.0	1.84 × 10 ⁻²		
0	0.50 × 10 ⁻²	2.50 × 10 ⁻²	
5.0	0.34 × 10 ⁻²	not measured	
	0 5.0 0 5.0 0	0 1.00×10^{-2} 5.0 0.92×10^{-2} 0 2.00×10^{-2} 5.0 1.84×10^{-2} 0 0.50×10^{-2}	

Complete Table 2 to show the initial rate of reaction of P in each experiment.

[1 mark]

Experiment	Initial rate / mol dm ⁻³ s ⁻¹
1	1.6 × 10 ⁻⁴
2	
3	

0 4

04.

1

04.2	Determine the order of reaction with respect to P and the order of reaction	Do not write outside the box
	with respect to Q . [2 marks]	
	Order with respect to P	
	Order with respect to Q	
04.3	A reaction between substances R and S was second order with respect to R and	
	second order with respect to S . At a given temperature, the initial rate of reaction was 1.20×10^{-3} mol dm ⁻³ s ⁻¹	
	when the initial concentration of R was 1.00×10^{-2} mol dm ⁻³ and the initial concentration of S was 2.45×10^{-2} mol dm ⁻³	
	Calculate a value for the rate constant, <i>k</i> , for the reaction at this temperature.	
	Give the units for <i>k</i>	
	[3 marks]	
	k Units	6
	Turn over ►	

The rate constant, k, for a reaction varies with temperature as shown by the equation

 $k = Ae^{-E_a}IRT$

For this reaction, at 25 °C, $k = 3.46 \times 10^{-8} \text{ s}^{-1}$ The activation energy $E_a = 96.2 \text{ kJ mol}^{-1}$ The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Calculate a value for the Arrhenius constant, A, for this reaction. Give the units for A.

[4 marks]

Α

Units

4

06	This question is about isomers.	Do not write outside the box
06.1	Give a reagent and observations for a test-tube reaction to distinguish between 2-methylbutan-1-ol and 2-methylbutan-2-ol.	
	[3 marks]	
	Observation with 2-methylbutan-1-ol	
	Observation with 2-methylbutan-2-ol	
06.2	Compounds A and B both have the molecular formula $C_4H_8Br_2$ A has a singlet, a triplet and a quartet in its ¹ H NMR spectrum. B has only two singlets in its ¹ H NMR spectrum.	
	Draw a structure for each of A and B . [2 marks]	
	A B	
	Question 6 continues on the next page	

			Do not write
06.3	Compounds C and D both have the molecular formula $C_6H_3Br_3$ C has two peaks in its ¹³ C NMR spectrum. D has four peaks in its ¹³ C NMR spectrum.		outside the box
	Draw a structure for each of C and D	[2 marks]	
	C	D	

0 7	Isomers X and Y have the molecular formula C_5H_8O	Do not write outside the box
	Isomer X Isomer Y	
0 7.1	Give the IUPAC name for isomer X. [1 mark]	
07.2	Explain how and why isomers X and Y can be distinguished by comparing each of their boiling points ' ³ C NMR spectra infrared spectra. Use data from Tables A and C in the Data Booklet in your answer. [6 marks] [6 marks] [] [] [] [] [] [] [] [] [] [] [] [] []	

IB/G/Jun19/7405/2

IB/G/Jun19/7405/2

	Tu	rn over ►	
	Turn over for the next question		
			4
09.4	Suggest why it was necessary to use two different solvents.	[1 mark]	
09.3	Deduce the minimum number of amino acids present in the original mixture.	[1 mark]	
09.2	Suggest how the positions of the amino acids on the TLC plate were located.	[1 mark]	outside the box

IB/G/Jun19/7405/2

~

.....

	Some compounds with different molecular formulas have the same relative molecular mass to the nearest whole number. A dicarboxylic acid has a relative molecular mass of 118, to the nearest whole number. Deduce the molecular formula of the acid. [3 marks]	Do not write outside the box
	Molecular formula	
10.2	A student dissolved some of the dicarboxylic acid from Question 10.1 in water and made up the solution to 250 cm ³ in a volumetric flask. In a titration, a 25.0 cm ³ sample of the acid solution needed 21.60 cm ³ of 0.109 mol dm ⁻³ sodium hydroxide solution for neutralisation. Calculate the mass, in g, of the dicarboxylic acid used.	
	Give your answer to the appropriate number of significant figures. [4 marks]	
	Massg	

10.3	Compounds with molecular formula $C_6H_{14}O_2$ also have a relative molecular mass of 118 to the nearest whole number. These include the diol shown.	Do not write outside the box
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Deduce the number of peaks in the ¹ H NMR spectrum of this diol. [1 mark]	
10.4	Draw the structure of a different diol also with molecular formula $C_6H_{14}O_2$ that has a ¹ H NMR spectrum that consists of two singlet peaks. [1 mark]	
10.5	The dicarboxylic acid in question 10.1 and the isomers of $C_6H_{14}O_2$ in Questions 10.3 and 10.4 all have a relative molecular mass of 118	
	State why the dicarboxylic acid can be distinguished from the two diols by high resolution mass spectrometry using electrospray ionisation. [1 mark]	
		10
Turn over for the next question		

			Do not write outside the
1 3	Aqueous NaBH ₄ reduces aldehydes but does not reduce alkenes.		box
1 3.1	Show the first step of the mechanism of the reaction between NaBH ₄ and 2-methylbutanal. You should include two curly arrows.		
	Explain why NaBH₄ reduces 2-methylbutanal but has no reaction with 2-methylbut-1-ene.	[5 marks]	
	First step of mechanism		
	Explanation		
1 3 2	A student attempted to reduce a sample of 2-methylbutanal but added		
	insufficient NaBH ₄ The student confirmed that the reduction was incomplete by using a chemical test.		
	Give the reagent and observation for the chemical test.	[2 marks]	
	Reagent		
	Observation		
			7
	END OF QUESTIONS		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7405/2