# AQA

| Please write clearly in | block capitals.  |
|-------------------------|------------------|
| Centre number           | Candidate number |
| Surname                 | NODEL ANSWERS    |
| Forename(s)             |                  |
| Candidate signature     |                  |

## A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 4 June 2019

Afternoon

### Time allowed: 2 hours

#### Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

| For Examiner's Use |             |  |
|--------------------|-------------|--|
| Question           | Mark        |  |
| 1                  |             |  |
| 2                  |             |  |
| 3                  |             |  |
| 4                  |             |  |
| 5                  |             |  |
| 6                  |             |  |
| 7                  |             |  |
| 8                  | NAME OF T   |  |
| 9                  | CALL STREET |  |
| TOTAL              |             |  |









Do not write outside the box 0 1 3 The enthalpy of lattice formation for caesium iodide in Table 1 is a value obtained by experiment. The value obtained by calculation using the perfect ionic model is -582 kJ mol<sup>-1</sup> Deduce what these values indicate about the bonding in caesium iodide. [1 mark] Values close Nostly purely ionic 0 1. 4 Use data from Table 2 to show that this reaction is not feasible at 298 K  $Csl(s) \rightarrow Cs(s) + \frac{1}{2}l_2(s)$   $\Delta H^{\circ} = +337 \text{ kJ mol}^{-1}$ Table 2 Csl(s) Cs(s) 2(S) S<sup>e</sup> / J K<sup>-1</sup> mol<sup>-1</sup> 130 82.8 117 [4 marks]  $\Delta S = \Xi S(P) - \Xi S(R)$ = [82.8 + 1/2(117)] - 130 = 11.3 T k-1 mol-1 MI AG= AH - TAS L2 = 337 - (298 × 11.3 × 10-3) = 334 KT mol<sup>-1</sup> H3 (converting units) H4 (positive value : not feasible) 9 Turn over Turn over









IB/G/Jun19/7405/1

| 0 3   | This question is about periodicity, the Period 4 elements and their compounds.                        | Do not<br>outsid<br>bo |
|-------|-------------------------------------------------------------------------------------------------------|------------------------|
| 03.1  | State the meaning of the term periodicity. [1 mark]                                                   |                        |
|       | repeating pattern trend                                                                               |                        |
|       |                                                                                                       |                        |
| 0 3.2 | Identify the element in Period 4 with the highest electronegativity value. [1 mark]                   |                        |
|       | bromine Br                                                                                            |                        |
| 03.3  | Identify the element in Period 4 with the largest atomic radius.<br>Explain your answer.<br>[3 marks] |                        |
|       | Element Dotassium k                                                                                   | н                      |
|       | Explanation                                                                                           |                        |
|       | . lowest number probons (smallest nuclear charge<br>. similiar some shielding                         | HD                     |
|       | · similiar some shielding                                                                             | нз                     |
|       |                                                                                                       |                        |
| 0 3.4 | The equations for two reactions of arsenic(III) oxide are shown.                                      |                        |
|       | $As_2O_3 + 6HCl \rightarrow 2AsCl_3 + 3H_2O$                                                          |                        |
|       | $As_2O_3 + 6NaOH \rightarrow 2Na_3AsO_3 + 3H_2O$                                                      |                        |
|       | Name the property of arsenic(III) oxide that describes its ability to react in these two ways.        |                        |
|       | [1 mark]                                                                                              |                        |
|       | amphoteric                                                                                            |                        |
| 0 3.5 | Complete the equation for the formation of arsenic hydride. [1 mark]                                  |                        |
|       | $As_2O_3 + 6 Zn + 12 HNO_3 \rightarrow 2 AsH_3 + 6 Zn(NO_3)_2 + 3 H_2O$                               | 7                      |



|         | Figure 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Figure 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | $\begin{array}{c c} & & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ |
|         | Reaction 3 - reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Reaction 4<br>Concentrated NH <sub>3</sub> (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | ↓<br>Precipitate M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 4 . 1 | Give the formula of <b>Precipitate J</b> and state its colour.<br>Give an equation for <b>Reaction 1</b> .<br>[3 marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | Formula of J $\left[fe(0H_3)(H_20)_3\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | Colour (กามกา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Equation<br>$\left[f_{e}\left(H_{20}\right)_{s}\right]^{s+} + 3\left(o_{3}^{2^{-}} \rightarrow \left[f_{e}\left(OH_{3}\right)\left(H_{20}\right)_{s}\right] + 3\left(o_{2} + 3H_{2}O\right)_{s}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 4.2   | Give the formula of L and an equation for Reaction 2. [2 marks]<br>Formula of L $feCl_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Equation $\left[fe(H_20)_6\right]^{3+} + 4Ci^- \rightarrow \left[fe(I_4) + 6H_20\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 4.3   | Suggest a reagent for Reaction 3. [1 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



|       |                                                                                                                                                                 | Do not<br>outside<br>box |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 0 4 4 | Give the formula of Precipitate M and state its colour. [2 marks]                                                                                               | 50,                      |
|       | Formula of M $[fe(OH)_2(H_2O)_4]$                                                                                                                               |                          |
|       | Colour green                                                                                                                                                    |                          |
| 04.5  | Transition metal complexes have different shapes and many show isomerism.                                                                                       |                          |
|       | Describe the different shapes of complexes and show how they lead to different types of isomerism.<br>Use examples of complexes of cobalt(II) and platinum(II). |                          |
|       | You should draw the structures of the examples chosen. [6 marks]                                                                                                |                          |
|       | · Square planar complexes with two different                                                                                                                    |                          |
|       | ligande shows cis trans geometric isomerism                                                                                                                     |                          |
|       | eg. H <sub>3</sub> N NH3 H <sub>3</sub> N Cl                                                                                                                    |                          |
|       | CI CI CI NH2                                                                                                                                                    |                          |
|       | cis-platin trans-platin                                                                                                                                         |                          |
|       | · Octahedral complexes with bidentate or                                                                                                                        |                          |
|       | multidentate ligands show optical isomerism                                                                                                                     |                          |
|       | eg. N. I. N. N. N.                                                                                                                                              |                          |
|       |                                                                                                                                                                 |                          |
|       |                                                                                                                                                                 |                          |
|       |                                                                                                                                                                 |                          |
|       |                                                                                                                                                                 |                          |
|       |                                                                                                                                                                 |                          |
|       |                                                                                                                                                                 |                          |



|   |                | Do not<br>outsid<br>bo |
|---|----------------|------------------------|
|   |                |                        |
|   |                | _                      |
|   |                | _                      |
|   |                | -                      |
|   | <br>           | _                      |
|   | <br>           | <br>                   |
|   |                |                        |
| - |                |                        |
|   |                |                        |
|   |                |                        |
|   |                | _                      |
|   | <br>           | _                      |
|   | <br>           |                        |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   | <br>           | <br>                   |
|   |                | <br>                   |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   |                |                        |
|   |                | <br>                   |
|   | <br>           | <br>                   |
|   | * 's and' is a | 14                     |
|   |                |                        |
|   |                |                        |



| 0 5   | This question is about some Group 7 compounds.                                                                                                                                                                                                                                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 5.1 | Solid sodium chloride reacts with concentrated sulfuric acid.                                                                                                                                                                                                                       |
|       | Give an equation for this reaction.<br>State the role of the sulfuric acid in this reaction.<br>[2 marks]                                                                                                                                                                           |
|       | Equation                                                                                                                                                                                                                                                                            |
|       | Naci + H2 Soy -> NaHSO4 + HCI                                                                                                                                                                                                                                                       |
|       | Naci + H2 Soy -> NaHSO4 + HCI<br>Role aveid proton donor                                                                                                                                                                                                                            |
| 0 5.2 | Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid.                                                                                                                                                                                      |
|       | For <b>this</b> reaction                                                                                                                                                                                                                                                            |
|       | <ul> <li>give an equation</li> <li>give one other observation</li> </ul>                                                                                                                                                                                                            |
|       | <ul> <li>state the role of the sulfuric acid. [3 marks]</li> </ul>                                                                                                                                                                                                                  |
|       | Equation                                                                                                                                                                                                                                                                            |
|       | and I Can a No San San P. 1 alla                                                                                                                                                                                                                                                    |
|       | $2 \operatorname{NaBr} + \operatorname{H}_2 \operatorname{SO}_4 \rightarrow \operatorname{Na}_2 \operatorname{SO}_4 + \operatorname{SO}_2 + \operatorname{Br}_2 + 2\operatorname{H}_2 O$                                                                                            |
|       | $\frac{2 \text{Na Br} + \text{H}_2 \text{SO}_4 - 3 \text{Na}_2 \text{SO}_4 + \text{SO}_2 + \text{Br}_2 + 2 \text{H}_2 \text{O}_2}{\text{Observation}}$                                                                                                                              |
|       |                                                                                                                                                                                                                                                                                     |
|       | Observation                                                                                                                                                                                                                                                                         |
|       | Observation<br><u>Orange gas fumes</u><br>Role <u>Oxidising agent</u>                                                                                                                                                                                                               |
| 0 5.3 | Observation<br>Orange gas fumes<br>Role Oxidising agent<br>Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.                                                                                                                                              |
| 0 5.3 | Observation<br>Orange gas fumes<br>Role Oxidising agent<br>Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.<br>$3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$                                                                                       |
| 0 5.3 | Observation<br>Orange gas fumes<br>Role Oxidising agent<br>Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.                                                                                                                                              |
| 0 5.3 | Observation<br>Orange gas fumes<br>Role Oxidising agent<br>Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.<br>$3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$<br>Give the oxidation state of chlorine in NaClO <sub>3</sub> and in NaCl<br>[1 mark] |
| 0 5.3 | Observation<br>Orange gas fumes<br>Role Oxidising agent<br>Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.<br>$3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$<br>Give the oxidation state of chlorine in NaClO <sub>3</sub> and in NaCl<br>[1 mark] |





• finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in Table 3.

#### Table 3

| Reagent added to solution Y          | Observation                                               |
|--------------------------------------|-----------------------------------------------------------|
| silver nitrate solution              | cream precipitate containing compound D<br>and compound E |
| excess dilute nitric acid            | cream precipitate <b>D</b> and bubbles of gas <b>F</b>    |
| excess concentrated ammonia solution | colourless solution containing complex ion <b>G</b>       |

Give the formulas of D, E and F.

Give an **ionic** equation to show the formation of **E**. Give an equation to show the conversion of **D** into **G**.

| Formula of <b>D</b>                         | AgBr                                |
|---------------------------------------------|-------------------------------------|
| Formula of E                                | Ag_ (03                             |
| Formula of <b>F</b>                         | C02                                 |
| Ionic equation to form E $2Ag^{+} + CO_{3}$ | $2^{-} \rightarrow Hg_2(O_3)$       |
| Equation to show the con                    | version of D into G                 |
| AgBrt 2N                                    | $H_3 \rightarrow [Ag(NH_3)_2] + Br$ |
|                                             |                                     |



[6 marks]



Do not write outside the 0 6 . 2 box Suggest two ways that the student could reduce the percentage uncertainty in the measurement of the volume of sodium thiosulfate solution, using the same apparatus as this experiment. [2 marks] 1 Bigger mass of alloy Lower concentration of thiosulphate 2 lower myss to make solution 0 6 . 3 State the role of iodine in the reaction with sodium thiosulfate. [1 mark] oxidising agent Give the full electron configuration of a copper(II) ion. 0 6 . 4 [1 mark] 15252p6352p9 Copper(I) iodide is a white solid. 0 6 . 5 Explain why copper(I) iodide is white. [2 marks] Cut has a full 3d shell (3d") Not able to absorb visible light MI 42 Question 6 continues on the next page Turn over







Do not write outside the box

Sulfur trioxide decomposes on heating to form an equilibrium mixture containing sulfur dioxide and oxygen.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

**0 7 . 1** A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given temperature. The equilibrium mixture contained 6.08 g of sulfur dioxide.

Calculate the mass, in g, of oxygen gas in the equilibrium mixture.

[2 marks]

g

$$n S_{02} = \frac{6.08}{64.1} = 0.0949$$

$$n O_{2} = 0.0949 = 0.0474$$

$$2$$

$$MO_2 = 0.0474 \times 32$$

Mass 1.52

#### Question 7 continues on the next page

0 7

Turn over ►

Do not write outside the box

2 A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 K

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

Table 4

The amounts of each substance in the equilibrium mixture are shown in Table 4.

| Substance       | Amount at equilibrium / mol |
|-----------------|-----------------------------|
| sulfur trioxide | 0.320                       |
| sulfur dioxide  | 1.20                        |
| oxygen          | 0.600                       |
| H               | - 2.12                      |

For this reaction at 1050 K the equilibrium constant,  $K_p = 7.62 \times 10^5$  Pa

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant,  $K_p$ Calculate the total pressure, in Pa, of this equilibrium mixture.

| $SO_3: 0.32/2.12 = 0.15$ [4 marks]                                                                                                  |    |
|-------------------------------------------------------------------------------------------------------------------------------------|----|
| So2: 1.20/2.12 = 0.57                                                                                                               |    |
| 02:0.6 2.12 = 0.28                                                                                                                  |    |
| Mole fraction SO <sub>3</sub> $0.15$                                                                                                | М  |
| Mole fraction SO <sub>2</sub> 0.57                                                                                                  |    |
| Mole fraction $O_2$ $O \cdot 28$                                                                                                    |    |
| $K_{p} = \frac{(P SO_{2})^{2} (P O_{2})}{(P SO_{3})^{2}}$ $PP = mole fraction \times P$                                             | κъ |
| kp = ( well frac So_) 2 p2 x ( well frac O_2) P                                                                                     |    |
| (wal frac SO3)2 P2                                                                                                                  |    |
| P= 7.62 × 105 × 0.225 = 189207 Pa                                                                                                   | H3 |
| $0.3249 \times 0.28$<br>Total pressure <u><math>1-89 \times 10^5</math></u> Pa<br>(Allow $1.88 \times 10^5$ to $1.94 \times 10^5$ ) | нц |
| ( mile~ 1.00 × 10 - 10 1.14× 10 )                                                                                                   |    |



0 7 .

Do not write outside the 0 7 . 3 For this reaction at 1050 K the equilibrium constant,  $K_p = 7.62 \times 10^5$  Pa For this reaction at 500 K the equilibrium constant,  $K_p = 3.94 \times 10^4$  Pa box Explain how this information can be used to deduce that the forward reaction is endothermic. [2 marks] Higher temperature favours endothermic reachón - equilibrium shifts to right Higher kp indicates equilibrium is more to the right hand side MI H2 0 7 . 4 Use data from Question 07.3 to calculate the value of  $K_p$ , at 500 K, for the equilibrium represented by this equation. Deduce the units of  $K_p$  $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$  $k_{p} = \frac{(p S O_{3})^{2} (p O_{3})}{(p S O_{3})^{2}} = \sqrt{k_{p}}$  $\frac{(p S O_{3})^{2} (p O_{3})}{(p S O_{3})} = \sqrt{k_{p}}$ [2 marks] 3.94×104 = 198.49 Units =  $\frac{P_a}{P_a} \times \frac{P_a''^2}{P_a}$  $K_{p} = \frac{|98\cdot5}{\rho}$ Units =  $\frac{\gamma_{2}}{\rho}$ 10 Turn over for the next question Turn over **>** 



Do not write outside the 0 8 This question is about structure and bonding. box 0 8. 1 Draw a diagram to show the strongest type of interaction between two molecules of ethanol (C<sub>2</sub>H<sub>5</sub>OH) in the liquid phase. Include all lone pairs and partial charges in your diagram. [3 marks] MI = 2 lone pairs Calls ch O atom M2 = dotted M3 = H--- O-H straight line Methoxymethane (CH<sub>3</sub>OCH<sub>3</sub>) is an isomer of ethanol. 0 8. 2 Table 5 shows the boiling points of ethanol and methoxymethane. Table 5 Compound Boiling point / °C ethanol 78 methoxymethane -24In terms of the intermolecular forces involved, explain the difference in boiling points. [3 marks] bonds between strand molec waals' or dipole-dipole forces MI vor MZ methoxymethane ean intermolecular H3 are stronger forc



|                                                       | Extra space                                                                                                                                  | Do r<br>outs |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                       |                                                                                                                                              |              |
| 0 8 3                                                 | Draw the shape of the POCl <sub>3</sub> molecule and the shape of the $ClF_4^-$ ion.                                                         |              |
|                                                       | Include any lone pairs of electrons that influence the shapes.                                                                               |              |
|                                                       | In a POCl <sub>3</sub> molecule the oxygen atom is attached to the phosphorus atom by a double bond that uses two electrons from phosphorus. |              |
|                                                       | Name each shape.                                                                                                                             |              |
|                                                       | Suggest a value for the bond angle in $ClF_4^-$                                                                                              |              |
|                                                       | Shape of $POCl_3$ Shape of $ClF_4^-$                                                                                                         |              |
| p=5 $0=2$ $q=3$ $10$ $S paurs$ $1 double$ $= 4 paurs$ | Cl C                                                                                                     |              |
|                                                       | Name of shape of POCl3 tetra he dral                                                                                                         |              |
|                                                       | Name of shape of CIF4 - Square planar                                                                                                        |              |
|                                                       | Bond angle in ClF₄ <sup>−</sup>                                                                                                              | 1            |
|                                                       |                                                                                                                                              |              |
|                                                       | Turn over for the next question                                                                                                              |              |
|                                                       | Turn over ►                                                                                                                                  |              |



Do not write outside the box There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED



IB/G/Jun19/7405/1

For pure water at 40 °C, pH = 6.67 A student thought that the water was acidic. Explain why the student was incorrect. Determine the value of  $K_w$  at this temperature. [4 marks] Explanation Pure water [H+] = [OH-]  $kw = [H^+][OH^-] = [H^+]^2$  $[H^{\dagger}] = 10^{-6.67} = 2.138 \times 10^{-7}$  $kw = (2.138 \times 10^{-7})^2$ 

 $K_{\rm w} = \frac{4.57 \times 10^{-14}}{10^{-6}} \, {\rm mol}^2 \, {\rm dm}^{-6}$ 

Question 9 continues on the next page



0 9

0 9 . 1

Turn over ►

Do not write outside the

box

21

This question is about different pH values.

IB/G/Jun19/7405/1





Use Figure 4 to determine the value of 
$$K_a$$
 for propanoic acid at 25 °C  
Show your working.  
 $pka = pH$  at half-equivalence [3 marks]  
Volume half-equivalence =  $\frac{19.5}{2} = 9.75 \text{ cm}^3$   
 $pH$  half-equivalence =  $4.9$  (=  $pka$ )  
 $ka = 10^{-4.9}$   
 $K_a = 1.25 \times 10^{-5}$  mol dm<sup>-3</sup>

**0 9**. **3** Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick ( $\checkmark$ ) one box.

[1 mark]

| Indicator        | pH range    | Tick (✓) one box |
|------------------|-------------|------------------|
| methyl orange    | 3.1 – 4.4   |                  |
| bromothymol blue | 6.0 - 7.6   |                  |
| cresolphthalein  | 8.2 – 9.8   | 1                |
| indigo carmine   | 11.6 – 13.0 |                  |

Question 9 continues on the next page



Turn over ►

 $\begin{bmatrix} 0 & 9 \end{bmatrix}$  A student prepared a buffer solution by adding 0.0136 mol of a salt KX to 100 cm<sup>3</sup> of a 0.500 mol dm<sup>-3</sup> solution of a weak acid HX and mixing thoroughly.

The student then added  $3.00 \times 10^{-4}$  mol of potassium hydroxide to the buffer solution.

Calculate the pH of the buffer solution after adding the potassium hydroxide.

For the weak acid HX at 25 °C the value of the acid dissociation constant,  $K_a = 1.41 \times 10^{-5} \text{ mol dm}^{-3}$ .

Give your answer to two decimal places.

[6 marks]  $Hx \rightleftharpoons H^+ + x^$ ka = [H+][X] :- [H+]= ka [HX] < weakaoid [HX] [X-] < salt n NaOH added = 3.00×10-4 reacts with acid-reduces shift eqm-salt increases 1Hx initially = 0.5 x 100 × 10-3 = 0.05 nHx after = 0.05 - 3.00×10-4 = 0.0497 nkx after = 0.0136 + 3.00×10-4= 0.0139 [H+] = 1.41×10-5×0.0497 = 5.04×10-5 0.0139 pH= - log 5.04×10-5 рн \_\_\_\_ 4.30



