AQA

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	MODEL ANSWERS
Forename(s)	
Candidate signature	

A-level CHEMISTRY

Paper 3

Wednesday 19 June 2019 Morning

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend about 70 minutes on Section A and 50 minutes on Section B.

Time allowed: 2 hours

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
Section B		
TOTAL		

	Section A	
	Answer all questions in this section.	
1	Sodium thiosulfate reacts with dilute hydrochloric acid as shown. Nat So $_{3}^{0}$ H ⁺ Cr Nat So_{2} S H_{2}^{0} Na ₂ S ₂ O ₃ (aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO ₂ (g) + S(s) + H ₂ O(l)	
1.1	Give the simplest ionic equation for this reaction.	[1 mark]
	$S_2O_2^2 + H^+ \rightarrow SO_2 + S + H_2O$	
1.2	The gas SO_2 is a pollutant.	
	State the property of SO ₂ that causes pollution when it enters rivers.	
	Give an equation to show the reaction of SO ₂ with water.	[2 marks]
	Property acidic	
	Equation $So_2 + H_2O \rightarrow H_2So_3$	

		Do not write outside the
0 1.3	Draw a diagram to show the shape of a molecule of H_2O Include any lone pairs of electrons.	box
	State the H–O–H bond angle.	
	Explain this shape and bond angle. [4 marks]	
	Diagram	
	Bond angle 105° (range 104-105°)	
	· lone pairs repel more than bondly pairs	
	· Ione pairs repel more than bonding pairs · so bond angle reduced from 109.5°	
	Question 1 continues on the next page	
	Turn over	

The initial rate of the reaction between sodium thiosulfate and hydrochloric acid can

be monitored by measuring the time taken for a fixed amount of sulfur to be produced. Describe an experiment to investigate the effect of temperature on the initial rate of this reaction. Include • a brief outline of your method · how you will measure the time taken for a fixed amount of sulfur to be formed • how you will present your results in graphical form • a sketch of the graph that you would expect. LEVELLET [6 marks] Nethod sodrum thissupplate at nom Measure Volume Jack in a con. eratu Ma Crass arid C to Record for the cross to time taken be no seon emperatures ecen t ts USI 00 0 'C VSIL water a t Volum tration Same cross each time same Pruts ma give era gan a 2 graph: 1/t ٠ C

0 1 4

		Do not w outside box
		-
		-
		-
		-
		-
		-
		-
		-
		-
		_
		-
		-
		-
		13
	Turn over I	
0 5		
0 5	IB/G/Jun19/7405	5/3

■ 2 This question is about sulfuric acid and its salts. ■ 2.1 Draw the <u>displayed formula</u> of a molecule of H ₂ SO ₄ [1 mark]		
[1 mark] $0 = S - 0$ $0 = S - 0$ $0 = S - 0$ $0 = H$ $0 = S - 0$ $0 = H$ $1 = H^{2}SO_{4}$	02	This question is about sulfuric acid and its salts.
HSO ₄ ⁻ ions and H ⁺ ions. The HSO ₄ ⁻ ions act as a weak acid and dissociate to form SO ₄ ²⁻ ions and H ⁺ ions. Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution. Include appropriate arrows in your equations. [2 marks] Equation 1 $\underline{H_2SO_4} \rightarrow H^+ + HSO_4$	02.1	[1 mark]
	02.2	 HSO₄⁻ ions and H⁺ ions. The HSO₄⁻ ions act as a weak acid and dissociate to form SO₄²⁻ ions and H⁺ ions. Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution. Include appropriate arrows in your equations.

Do not write outside the box A student is required to make 250 $\rm cm^3$ of an aqueous solution that contains an accurately measured mass of sodium hydrogensulfate (NaHSO_4). 0 2 . 3 Describe the method that the student should use to make this solution. [4 marks] bottle mass Nattso red MI bottle to calcu -weigh illecente P taki Nattsou led 5 Deaker a H2 MIX. dissolve 0 12 250 cm 3 volumet to ask C.TI M3 distilled with water the wash Flack to stilled U with 1 M4 inver Se 6 ral 0 Do C 000 Extra space Question 2 continues on the next page Turn over **>**

IB/G/Jun19/7405/3

$$\begin{bmatrix} 0 & 2 \end{bmatrix} \cdot 4 \quad A \text{ solution that contains 605 mg of NAHSO, in 100 cm3 of solution has a pH of 1.72} \\ A Hernetwe Calculate the value of K0 for the hydrogensulfate ion (HSO2) that is behaving as a week acid.
in Wark of Weyour answer to three significant figures.
Scheme State the units of K0
NaHSO4 \rightarrow Na⁺ + HSO₄ then HSO₄ \Rightarrow H⁺⁺ + SO₄⁺⁻
Ka = [H⁺] [SO₄²⁺] \Rightarrow Ka \approx [H⁺]²
[H⁺] = 10⁻¹⁻⁷² = 0.0190S weld m³.
NaHSO₄ = $60S \times 10^{-3} = 5.037 \times 10^{-3}$
H1
 $\Lambda = M$ N NaHSO₄ = $60S \times 10^{-3} = 5.037 \times 10^{-3}$
 $\alpha = HSO_{4} = 5.037 \times 10^{-3} = 0.05037$ weld m⁻³.
Ka = $(0.01905)^{2}$ (weld m⁻³)^K
Ka = $(0.01905)^{2}$ (w$$

IB/G/Jun19/7405/3

0 3 . 6 A student sets up a cell as shown in the cell representation.

Zn(s)|Zn²⁺(aq)||Cu²⁺(aq)|Cu(s)

The student measures the cell EMF, E_{cell} , with several different concentrations of Cu^{2+} ions and Zn^{2+} ions.

The results are shown in Table 2.

Table 2					
Experiment	[Zn ²⁺] / mol dm ^{–3}	[Cu ²⁺] / mol dm ^{–3}	$\ln\left(\frac{[Zn^{2+}]}{[Cu^{2+}]}\right)$	E _{cell} / V	
1	0.010	1.0	-4.61	1.16	
2	0.10	1.0	-2.30	1.13	
3	1.0	1.0	0.00	1.10	
4	1.0	0.10	2.30	1.07	
5	1.0	0.010	4.61	1.04	

Complete Table 2 to show the value missing from experiment 4.

Plot a graph of E_{cell} against ln ([Zn²⁺]/[Cu²⁺]) on the grid.

М

IB/G/Jun19/7405/3

Do not write outside the box 0 3 7 This equation shows how E_{cell} varies with concentration for this reaction. $E_{\text{cell}} = (-4.3 \times 10^{-5} \times T) \ln \left(\frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}\right) + E^{\Theta}_{\text{cell}}$ This equation is in the form of the equation for a straight line, y = mx + cCalculate the gradient of your plotted line on the graph in question 03.6. You must show your working. Use your gradient to calculate the temperature, T, at which the measurements of E_{cell} were taken. (If you were unable to calculate a gradient you should use the value -0.016 V This is not the correct value.) gradient = $-4.3 \times 10^{-5} \times T$ gradient = $\frac{(1.16 - 1.04)}{(-4.61 - 4.61)} = \frac{0.12}{-9.22}$ [3 marks] Gradient -0.013V T = gradient = -0.013- 11.3 × 10⁻⁵ - 4.3 × 10⁻⁵ т 302 K In experiment 2 in Table 2 the electrode potential of the Cu2+/Cu electrode is +0.33 V 0 3 8 Use data from Table 2 in question 03.6 to calculate the electrode potential for the Zn^{2+}/Zn electrode in experiment 2. Give one reason why your calculated value is different from the standard electrode potential for Zn^{2+}/Zn electrode. Feell = E = E = 1 + |Zn|Electrode potential -0.80 V [2 marks] Temperature is not standard conditions Reason 17

04	Ethanal reacts with potassium cyanide, followed by dilute acid, to form 2-hydroxypropanenitrile.	Do not write outside the box
04.1	Name the mechanism for the reaction between potassium cyanide and ethanal. [1 mark] Nucleophilic addition	
04.2	The 2-hydroxypropanenitrile formed by the reaction in question 04.1 is a mixture of equal amounts of two isomers. State the name of this type of mixture. Explain how the structure of ethanal leads to the formation of two isomers. Draw 3D representations of the two isomers to show the relationship between them. [5 marks] Name <u>facemic (Mixture) fracenale</u> Explanation <u>planar c=0</u> <u>allows agval chance of attack from both</u> <u>sides by the nucleophile</u>	м3 м7 м1
	3D representations	<u>н</u> 4. 1 ИS

		Do not write outside the box
0 4 . 3	2-Hydroxypropanenitrile can be used in the synthesis of the monomer, acrylonitrile, CH ₂ =CHCN	507
	Suggest a suitable reagent and conditions for the conversion of 2-hydroxypropanenitrile into acrylonitrile.	
	Reagent $conc. H_3SO_4$ or conc. H_3PO_4	
	Conditions heat or hot or reflux	
0 4 4	Draw a section of the polymer polyacrylonitrile, showing three repeating units. [1 mark]	
	H H H H H H	
	$\begin{array}{c} H \\ H \\ - C \\ - C$	
	H ON H ON H ON	
		9
	Turn over for the next question	
	T	
	Turn over ▶	

Do not write outside the box 0 5 The percentage by mass of iron in a steel wire is determined by a student. The student reacts 680 mg of the wire with an excess of sulfuric acid, so that all of the iron in the wire forms Fe²⁺(aq) makes up the volume of the Fe²⁺(aq) solution to exactly 100 cm³ • takes 25.0 cm³ portions of the Fe²⁺(aq) solution • titrates each portion with 0.0200 mol dm⁻³ potassium manganate(VII) solution. 0 5 . 1 Give the equation for the reaction between iron and sulfuric acid. [1 mark] fe + H2SO4 -> fe SO4 + H2 0 5 2 The titration results are shown in Table 3. Table 3 1 2 3 Final volume / cm³ 22.90 45.60 22.60 Initial volume / cm³ 0.00 22.90 0.00 Titre / cm³ 22.90 22.70 22.60 Calculate the mean titre. [1 mark] 22.7+22-6 Mean titre 22.65 cm³ Give the overall ionic equation for the oxidation of Fe^{2+} by manganate(VII) ions, in acidic conditions. $Sfe^{2+} \rightarrow Sfe^{3+} + 5e^{-} \times 5$ $HnO_{4} + 5e^{-} + 8H^{+} \rightarrow Hn^{2+} + 4H_{2}O$ [1 m 0 5 . 3 [1 mark] $H_{n}O_{4}^{-} + Sfe^{2+} + 8H^{+} \rightarrow Sfe^{3+} + H_{n}a^{+} + 4H_{a}O$

0 5.4	State the colour change seen at the end point of the titration.	Do not write outside the box
	colourtess to pale pink [1 mark]	
0 5.5	Name the piece of apparatus used for these stages of the method. [1 mark]	
	Taking the 25.0 cm ³ portions (volumetric) pipette	
	Adding the potassium manganate(VII) solution burefle	
0 5.6	The balance used to weigh the 680 mg of iron wire has an uncertainty of ± 0.005 g	
	A container was weighed and its mass was subtracted from the total mass of the container and wire.	
	Calculate the <u>percentage uncertainty</u> in using the balance. [1 mark] Two readings taken so total uncertainty x 2	
	$\frac{0.01}{680 \times 10^{-3}} \times 100$	
		6
	% uncertainty /·47	

	Section B	Do not wri outside th box
	Answer all questions in this section.	
		_
	nswer per question is allowed. Inswer completely fill in the circle alongside the appropriate answer.	
CORRECT METH	HOD WRONG METHODS S C	
lf you want	to change your answer you must cross out your original answer as shown. 💌	
If you wish as shown.	to return to an answer previously crossed out, ring the answer you now wish to select	
	o your working in the blank space around each question but this will not be marked. additional sheets for this working.	
06	Which amount of sodium hydroxide would react exactly with 7.5 g of a diprotic acid, H_2A ($M_r = 150$)?	
	$H_{a} \times + 2 \operatorname{Na0H} \rightarrow \operatorname{Na}_{a} \times + 2 H_{a} O \qquad [1 \text{ mark}]$	(]
N=CV	A 50 cm ³ of 0.05 mol dm ⁻³ NaOH(aq) 0.0025	
	B 100 cm ³ of 0.50 mol dm ⁻³ NaOH(aq) $0 \cdot 0S$	
	C 100 cm ³ of 1.0 mol dm ⁻³ NaOH(aq) O · I O	
	D 100 cm ³ of 2.0 mol dm ⁻³ NaOH(aq) $0 \cdot 20$	
	N= Mr 7.5 = 0.05 mel acid so need 0.10 mel NaOH	ł

Lead(II) nitrate and potassium iodide react according to the equation

0 7

Do not write outside the box

 $Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$ In an experiment, 25.0 cm³ of a 0.100 mol dm⁻³ solution of each compound are mixed together. Which amount, in mol, of lead(II) iodide is formed? [1 mark] n=cv **A** 1.25 x 10⁻³ A 1.25×10^{-3} B 2.50×10^{-3} C 1.25×10^{-2} D 2.50×10^{-2} A 1.25×10^{-3} A 1.25×10^{-3} C 1.25×10^{-2} C 1.0 8 Nitrogen dioxide is produced from ammonia and air as shown in these equations $4 \text{NH}_3(g) + 5 \text{O}_2(g) \rightarrow 4 \text{NO}(g) + 6 \text{H}_2 \text{O}(g)$ $\Delta H = -909 \text{ kJ mol}^{-1}$ $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $\Delta H = -115 \text{ kJ mol}^{-1}$ What is the enthalpy change (in kJ mol⁻¹) for the following reaction? $4 \text{NH}_3(g) + 7 \text{O}_2(g) \rightarrow 4 \text{NO}_2(g) + 6 \text{H}_2 \text{O}(g)$ -909 72x-115 4NO+6H20 [1 mark] A -679 0 $\Delta H_{C} = \Delta H_{1} + \Delta H_{2}$ **B** -794 0 $= -909 + (2 \times -115)$ **C** -1024 0 = -1139**D** -1139

Turn over <

Do not write outside the box 0 9 Which change leads to a higher concentration of SO₃ in this equilibrium mixture? $2SO_2(g) + O_2(g) \stackrel{evol}{\simeq} 2SO_3(g)$ $\Delta H = -188 \text{ kJ mol}^{-1}$ [1 mark] A higher concentration of O_2 Skift b HS 0 B higher temperature Skift to LHS 0 shift to LHS C lower pressure 0 no change **D** use of a catalyst 0 1 0 The results of an investigation of the reaction between P and Q are shown in this table. Initial rate Initial [P] Initial [Q] Experiment $/ \text{ mol dm}^{-3} \text{ s}^{-1}$ / mol dm⁻³ / mol dm⁻³ 1 0.200 0.500 0.400 To be 2 0.800 0.600 calculated The rate equation is: $rate = k [P] [Q]^2$ What is the initial concentration of Q in experiment 2? k = rate [P][0]² [1 mark] expt 1: $k = \frac{0.4}{(0.2)(0.5)^2} = 8$ $expt 2: [Q]^2 = rate = \frac{rate}{k[P]}$ A 0.167 0 **B** 0.333 0 **C** 0.408 0 0 **D** 0.612 $= \frac{0.8}{8 \times 0.6} = 0.167$ [Q] = 0.408

1 1 The equation for the reaction between sulfur dioxide and oxygen is shown. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ In an experiment, 2.00 mol of sulfur dioxide are mixed with 2.00 mol of oxygen. The total amount of the three gases at equilibrium is 3.40 mol What is the mole fraction of sulfur trioxide in the equilibrium mixture? [1 mark] $2s_{2} + o_{2} = 2s_{3}$ ni 2.0 2.0 0 neque 2-2x 2-x 2x = 3.40 4 - 2c = 3.4 2c = 0.6mol Grachen = moles gas = 1.2total moles 3.4**A** 0.176 **B** 0.353 **C** 0.600 **D** 1.200 1 2 Nitrogen reacts with hydrogen in this exothermic reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Which change increases the equilibrium yield of ammonia but has no effect on the value of the equilibrium constant K_p ? [1 mark] no effect on yield A Add a catalyst 0 B Increase the partial pressure of nitrogen increases of ed no effect on Kp C Decrease the temperature increases yield and Kp 0 0 D Decrease the total pressure no effect on yield 0

Turn over 🕨

Do not write outside the

box

			Do not write outside the box
1 6	An aqueous solution of a salt gives a <u>white precipitate</u> when mixed with aqueous silver nitrate and when mixed with dilute sulfuric acid.	1	DUX
	$\rightarrow Aqu(s) \rightarrow BaSo_4(s)$		
	Which could be the formula of the salt?	[1 mark]	
	A BaCl ₂	-	
	B (NH ₄) ₂ SO ₄	0	
	C KCI	0	
	D $Sr(NO_3)_2$	0	
1 7	Which statement is not correct about the trends in properties of the hy from HCl to HI ?	drogen halides	
		[1 mark]	
	A The boiling points decrease.	•	
	B The bond dissociation energy of H–X decreases. $ au$	0	
	C The polarity of the H–X bond decreases. T	0	
	D They are more easily oxidised in aqueous solutions. T	0	
1 8	What is observed when <u>concentrated hydrochloric acid</u> is added to an	aqueous	
	solution of CuSO₄ until no further change occurs?	[1 mark]	
	A A colourless gas is evolved and a precipitate forms.	0	
	B A colourless gas is evolved and no precipitate forms.	0	
	C A precipitate forms that dissolves in an excess of concentrated hydrochloric acid.	0	
	D The solution changes colour and no precipitate forms.	•	
	$\left[\operatorname{Cu}(H_{20})_{6}\right]^{2+} \operatorname{Cu}(H_{20}) + 4 \operatorname{Cl}^{-}(\operatorname{ag}) \rightarrow \left[\operatorname{Cu}(L_{4})\right]^{2} \operatorname{Cu}(L_{4})^{2} Cu$	q)+6H201	J

IB/G/Jun19/7405/3

				o not writ
2 1	A possible synthesis of a compound found in jasmine flower oil is sho	own.	01	butside the box
	Cl Cl nucleophilic radical subshtuhon Cl nucleophilic caddinon- elimination	0	>0	
	Which mechanism is not used in this synthesis?		[1 mark]	
	A Electrophilic substitution	-		
	B Nucleophilic substitution	0		
	C Free-radical substitution	0		
	D Nucleophilic addition-elimination	0		
22	Which compound is <u>formed</u> when 1-pheny <u>lethanol</u> reacts with acidified potassium dichromate(VI)?		[1 mark]	
	A C ₆ H ₅ CH ₂ CH ₂ OH	0		
	B C ₆ H ₅ CH ₂ CHO	0		
	C C ₆ H ₅ COCH ₃	-		
	D C ₆ H ₅ CH ₂ COOH	0		
	$CH_3 OH + [0] \rightarrow CH_3 = 0 + H - C + I = 0$	HO		
	(0)			

Turn over 🕨

Turn over **>**

Do not write outside the 3 0 Two strands of DNA are linked together by hydrogen bonding between bases on each strand. Which row shows the number of hydrogen bonds between the pair of bases? Use the Data Booklet to help you answer this question. [1 mark] Number of Base 1 Base 2 hydrogen bonds 2 wona 0 Α adenine guanine 2 0 в cytosine thymine С cytosine 3 0 guanine 3 0 D adenine thymine (2 For tea) 3 1 Which is not responsible for conduction of electricity? [1 mark] 0 A The sodium ions in molten sodium chloride B The electrons between layers of carbon atoms in graphite 0 C The bonding electrons in a metal 0 D The lone pair electrons on water molecules

box

