

Please write clearly in	n block capitals.	
Centre number	Candidate	e number
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Monday 8 June 2020

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

0 1. **2** Another student reacted different initial concentrations of phosphinate ions with an excess of hydroxide ions. The student measured the time (*t*) taken to collect 15 cm³ of hydrogen gas. Each experiment was carried out at the same temperature. **Table 1** shows the results.

Table 1

Initial [H ₂ PO ₂ ⁻] / mol dm ⁻³	t/s
0.25	64
0.35	32
0.50	16
1.00	4

State the relationship between the initial concentration of phosphinate and time (t).

Deduce the order of the reaction with respect to phosphinate.

[2 marks]

Relationship

Order

Question 1 continues on the next page

01.3	Complete the diagram in Figure 2 to show how the hydrogen gas could be collected and measured in the experiments in Questions 01.1 and 01.2 . [1 mark]	C
	Figure 2	
	The rate equation for a different reaction is	
	<i>rate</i> = <i>k</i> [L] [M] ²	
0 1.4	Deduce the overall effect on the rate of reaction when the concentrations of both L and M are halved.	
	[1 mark]	

4

0 1 . 5	The rate of reaction is 0.0250 mol dm ⁻³ s ⁻¹ when the concentration of L is 0.0155 mol dm ⁻³ Calculate the concentration of M if the rate constant is 21.3 mol ⁻² dm ⁶ s ⁻¹	[3 marks]	Do not write outside the box
	Concentration of M	_mol dm ⁻³	
0 1.6	Define the term overall order of reaction.	[1 mark]	
			11
	Turn over for the next question		

0 3	This question is about the structural isomers shown.		Do not outside bo
	P Q	R	
	ОН	ОН	
		U O	
0 3.1	HO Identify the isomer(s) that would react when warmed with acidified potassium dichromate(VI).		
	State the expected observation when acidified potassium dich	[2 marks]	
	Isomer(s)		
	Expected observation		
0 3.2	Identify the isomer(s) that would react with Tollens' reagent.		
	State the expected observation when Tollens' reagent reacts.	[2 marks]	
	lsomer(s)		
	Expected observation		

IB/M/Jun20/7405/2

03.3	Separate samples of each isomer are warmed with ethanoic acid and a few drops of concentrated sulfuric acid. In each case the mixture is then poured into a solution of sodium hydrogencarbonate.
	Identify the isomer(s) that would react with ethanoic acid.
	Suggest a simple way to detect if the ethanoic acid reacts with each isomer.
	Give a reason why the mixture is poured into sodium hydrogencarbonate solution.
	[3 marks]
	Isomer(s)
	Suggestion
	Peason
	Reason
03.4	State the type of structural isomerism shown by isomers P , Q , R and S . [1 mark]
03.5	Describe fully how infrared spectra can be used to distinguish between isomers R , S and T . Use data from Table A in the Data Booklet in your answer. [4 marks]
03.6	State why mass spectrometry using electrospray ionisation is not a suitable method to distinguish between the isomers. [1 mark]

13

Do not write outside the box

0 4	Aspirin can be produced by reacting salicylic acid with ethanoic anhydride.	D c
	An incomplete method to determine the yield of aspirin is shown.	
	1. Add about 6 g of salicylic acid to a weighing boat.	
	2. Place the weighing boat on a 2 decimal place balance and record the mass.	
	3. Tip the salicylic acid into a 100 cm ³ conical flask.	
	 Add 10 cm³ of ethanoic anhydride to the conical flask and swirl. 	
	6. Add 5 drops of concentrated phosphoric acid.	
	7. Warm the flask for 20 minutes.	
	8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.	
	9. Filter off the crude aspirin from the mixture and leave it to dry.	
	10. Weigh the crude aspirin and calculate the yield.	
04.1	Describe the instruction that is missing from step 4 of the method.	
	Justify why this step is necessary.	
	[2 marks]]
	Instruction	_
	Justification	
		-
	·	-
		_
0 4 . 2	Suggest a suitable piece of apparatus to measure out the ethanoic anhydride in step 5 .	
		1
	[1 mark]	l
		-
04.3		-

04.9	A sample of the crude aspirin is kept to compare with the purified aspirin. Describe one difference in appearance you would expect to see between the solid samples.	ese two [1 mark]
04.8	The pure aspirin is filtered under reduced pressure. A small amount of cold ethanol is then poured through the Buchner funnel. Explain the purpose of adding a small amount of cold ethanol.	[1 mark]
	Precaution 2	
	aspirin.	[2 marks]
04.7	The crude aspirin can be purified by recrystallisation using hot ethanol (boiling point = 78 °C) as the solvent. Describe two important precautions when heating the mixture of ethanol and	
	Difference 2	
	Difference 1	[2 marks]
04.6	Suggest two ways in which the melting point of the crude aspirin collected in would differ from the melting point of pure aspirin.	

Do not write outside the box

IB/M/Jun20/7405/2

0 5	This question is about 2-bromopropane.	Do not write outside the box
0 5.1	Define the term electronegativity.	
	Explain the polarity of the C–Br bond in 2-bromopropane. [3 mark]	ks]
	Electronegativity	
	Explanation	
0 5.2	Outline the mechanism for the reaction of 2-bromopropane with an excess of ammonia.	
	[4 mark	ks]

	Do not write
Draw the skeletal formula of the main organic species formed in the reaction between a large excess of 2-bromopropane and ammonia.	outside the box
Give a use for the organic product. [2 marks]	
Skeletal formula	
Use	9
Turn over for the next question	

0 5.3

$\begin{array}{c} \bullet & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet$	0 6	Polystyrene can be made from benzene in the series of steps shown.	Do n outs
 step 1 CH₃ step 2 CH₃ step 3 CH₂ step 4 Polystyrene 0 6 . 1 State the type of reaction in step 1. Identify the reagent(s) and conditions needed for step 1. Type of reaction			
 Polystyrene 0 6 . 1 State the type of reaction in step 1. Identify the reagent(s) and conditions needed for step 1. [3 marks] Type of reaction		$ \underbrace{\underbrace{\operatorname{step 1}}_{C} \xrightarrow{C}_{CH_3} \underbrace{\operatorname{step 2}}_{CH_3} \xrightarrow{C}_{CH_3} \underbrace{\operatorname{step 3}}_{CH_2} \xrightarrow{C}_{CH_2} $	
0 6.1 State the type of reaction in step 1. Identify the reagent(s) and conditions needed for step 1. [3 marks] Type of reaction		step 4	
Identify the reagent(s) and conditions needed for step 1. [3 marks] Type of reaction [3 marks] Reagent(s)		Polystyrene	
[3 marks] Type of reaction	06.1	State the type of reaction in step 1 .	
Type of reaction			
O 6.2 State the name of the mechanism for the reaction in step 2. Identify the inorganic reagent needed for step 2. Name the organic product of step 2. [3 marks] Name of mechanism Inorganic reagent			
0 6 2 State the name of the mechanism for the reaction in step 2. Identify the inorganic reagent needed for step 2. Name the organic product of step 2. Name the organic product of step 2. [3 marks] Name of mechanism			
Identify the inorganic reagent needed for step 2. Name the organic product of step 2. [3 marks] Name of mechanism Inorganic reagent		Conditions	
Name the organic product of step 2. [3 marks] Name of mechanism Inorganic reagent	06.2	State the name of the mechanism for the reaction in step 2 .	
[3 marks] Name of mechanism Inorganic reagent		Identify the inorganic reagent needed for step 2 .	
Inorganic reagent		•	
Name of organic product			
		Name of organic product	

		Do not write outside the box
0 6 . 3	The organic product of step 2 is reacted with concentrated sulfuric acid in step 3 .	box
	Outline the mechanism for step 3 . [3 marks]	
06.4	Draw the repeating unit of polystyrene.	
	[1 mark]	
		10
	Turn over for the next question	

		Do not write
0 7	This question is about NMR spectroscopy.	outside the box
07.1	A compound is usually mixed with Si(CH ₃) ₄ and either CCl ₄ or CDCl ₃ before recording the compound's ¹ H NMR spectrum.	
	State why Si(CH ₃) ₄ , CCl ₄ and CDCl ₃ are used in ¹ H NMR spectroscopy.	
	Explain how their properties make them suitable for use in ¹ H NMR spectroscopy. [6 marks]	

Question 7 continues on the next page

Turn over ►

		Do not write outside the
0 7 . 2	Deduce the splitting pattern for each of the peaks given by the H atoms labelled \mathbf{x} , \mathbf{y} and \mathbf{z} in the ¹ H NMR spectrum of the compound shown.	box
	xyz CH ₃ CHClCOCH(CH ₃) ₂	
	[3 marks]	
	x y	
	z	
07.3	Suggest why it is difficult to use Table B in the Data Booklet to predict the chemical shift (δ value) for the peak given by the H atom labelled y . [1 mark]	
07.4	Two isomers of CH ₃ CHClCOCH(CH ₃) ₂ each have two singlet peaks only in their ¹ H NMR spectra. In both spectra the integration ratio for the two peaks is 2:9	
	Deduce the structures of these two isomers. [2 marks]	
	Isomer 1	
	Isomer 2	
		12

			Do not wri outside th
0 8	This question is about citric acid, a hydrated tricarboxylic acid. Its formula c represented as $H_3Y.xH_2O$	an be	box
0 8.1	A 1.50 g sample of $H_3Y.xH_2O$ contains 0.913 g of oxygen by mass. The sample burns completely in air to form 1.89 g of CO_2 and 0.643 g of H_2	0	
	Show that the empirical formula of citric acid is $C_3H_5O_4$	[5 marks]	
		[o marks]	
08.2	A 3.00 g sample of $H_3Y.xH_2O$ (M_r = 210.0) is heated to constant mass. The anhydrous H_3Y that remains has a mass of 2.74 g		
	Show, using these data, that the value of $x = 1$	[2 marks]	
	Т	urn over 🕨	

	Figure 5 shows the structure of H_3Y	Do not write outside the box
	Figure 5	
	OH	
	ноос соон	
	СООН	
0 8.3	Complete this IUPAC name for H₃Y	
	[1 mark]	
	propane-1, 2, 3-tricarboxylic acid	
0 8.4	State the number of peaks you would expect in the 13 C NMR spectrum for H ₃ Y [1 mark]]
		9

09	A and B react together to form an equilibrium mixture.	Do not outside box
	$A(aq) + 2B(aq) \Rightarrow C(aq)$	
	An aqueous solution containing 0.25 mol of A is added to an aqueous solution containing 0.25 mol of B .	
	When equilibrium is reached, the mixture contains 0.015 mol of C .	
09.1	Calculate the amount of A and the amount of B , in moles, in the equilibrium mixtur [2 ma	
	Amount of A m	ol
	Amount of B m	ol
09.2	At a different temperature, another equilibrium mixture contains 0.30 mol of A , 0.25 mol of B and 0.020 mol of C in 350 cm ³ of solution.	
	Calculate the value of the equilibrium constant K_c	
	Deduce the units of K _c [4 ma	rks]
	<i>K</i> _c	
	Units	

IB/M/Jun20/7405/2

23

	When an excess of water is added to chloroethanal, an equilibrium mixture	is formed.
	$ClCH_2CHO(aq) + H_2O(I) \Rightarrow ClCH_2CH(OH)_2(aq)$	
	An expression for an equilibrium constant (K) for the reaction under these	
	conditions is $K = \frac{[\text{ClCH}_2\text{CH}(\text{OH})_2]}{[\text{ClCH}_2\text{CHO}]}$	
	[CICH ₂ CHO]	
09.3	Suggest why an expression for K can be written without the concentration of	of water. [1 mark]
09.4	Distilled water is added to 4.71 g of chloroethanal (M_r = 78.5) to make 50.0 solution. The mixture is allowed to reach equilibrium.	cm ³ of
	The value of the equilibrium constant (<i>K</i>) is 37.0	
	Calculate the equilibrium concentration, in mol dm ^{-3} , of ClCH ₂ CH(OH) ₂	[5 marks]
	Concentration	mol dm ⁻³

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third - party copyright material are published in a separate booklet. This
	booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

