

Please write clearly in t	olock capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

A-level CHEMISTRY

Paper 3

Wednesday 17 June 2020 M

Morning

Time allowed: 2 hours

Question

1

2

3

4

5

6

Section B

TOTAL

For Examiner's Use

Mark

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend 70 minutes on Section A and 50 minutes on Section B.

	Section A
	Answer all questions in this section.
0 1	This question is about emissions of oxides of nitrogen from petrol and diesel engines.
01.1	Explain how oxides of nitrogen are formed in engines. [2 marks]
0 1.2	State why it is desirable to decrease emissions of oxides of nitrogen from vehicles. [1 mark]
0 1.3	Modern diesel vehicles use diesel exhaust fluids, such as AdBlue, to decrease emissions of oxides of nitrogen.
0 1.3	
01.3	emissions of oxides of nitrogen. AdBlue reacts with water in the hot exhaust gases to form ammonia. In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form
01.3	emissions of oxides of nitrogen. AdBlue reacts with water in the hot exhaust gases to form ammonia. In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water.
01.3	 emissions of oxides of nitrogen. AdBlue reacts with water in the hot exhaust gases to form ammonia. In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water. Give the oxidation state of nitrogen in each of NO₂, NH₃ and N₂ Complete the equation for the reaction between NO₂ and NH₃
01.3	emissions of oxides of nitrogen. AdBlue reacts with water in the hot exhaust gases to form ammonia. In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water. Give the oxidation state of nitrogen in each of NO ₂ , NH ₃ and N ₂ Complete the equation for the reaction between NO ₂ and NH ₃ [2 marks]
01.3	emissions of oxides of nitrogen. AdBlue reacts with water in the hot exhaust gases to form ammonia. In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water. Give the oxidation state of nitrogen in each of NO ₂ , NH ₃ and N ₂ Complete the equation for the reaction between NO ₂ and NH ₃ [2 marks] Oxidation state of nitrogen in

01.4	Petrol vehicles have a catalytic converter which decreases emissions of oxide nitrogen. Platinum in the catalytic converter acts as a heterogeneous catalyst.	es of bo	le the
	State the meaning of the term heterogeneous catalyst.	2 marks]	
0 1 . 5	Some carbon particulates are also formed in both diesel and petrol vehicles. Explain why carbon particulates are formed.	[1 mark]	
		8	-
	Turn over for the next question		
	Τι	ırn over ►	

0 2	This question is about oxides.	Do not write outside the box
02.1	Sodium oxide forms a solution with a higher pH than magnesium oxide when equal amounts, in moles, of each oxide are added separately to equal volumes of water.	
	State why both oxides form alkaline solutions.	
	Suggest why sodium oxide forms a solution with a higher pH than the solution formed from magnesium oxide.	
	[2 marks]	
02.2	Give an equation for the reaction between phosphorus(V) oxide and water. [1 mark]	
02.3	In the Contact process, sulfur(IV) oxide is converted into sulfur(VI) oxide using vanadium(V) oxide as a catalyst.	
	Give two equations to show how the vanadium(V) oxide acts as a catalyst in this	
	process. [2 marks]	
	Equation 1	
		5
	Equation 2	

03.1	Explain why complexes formed from transition metal ions are coloured. [3 marks] [3 marks] [5 marks] [6 marks] [7 mar	Do not write outside the box
	 Method: Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe³⁺(aq). Convert the Fe³⁺(aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm³ Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. 	
03.2	Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$ Planck constant, $h = 6.63 \times 10^{-34} \text{ J s}$ [3 marks]	
	Energy gained by each electron J	

			Do not write outside the
03.3	Describe how a calibration graph is produced and used to find the concentration	ation of the	box
	iron(III) complex.	[3 marks]	
0 3.4	The concentration of iron(III) in the solution is 4.66 x 10^{-3} mol dm ⁻³		
	Calculate the mass, in mg, of iron in the tablet used to make the 250 cm ³ of	solution.	
		[2 marks]	
			11
	Mass of iron in the tablet	mg	

		Do not write
04	Cisplatin, $[Pt(NH_3)_2Cl_2]$, is used as an anti-cancer drug.	outside the box
04.1	Cisplatin works by causing the death of rapidly dividing cells.	
	Name the process that is prevented by cisplatin during cell division. [1 mark]	
	After cisplatin enters a cell, one of the chloride ligands is replaced by a water	
	molecule to form a complex ion, B .	
04.2	Give the equation for this reaction.	
	[2 marks]	
		1
	IB/M/Jun20/7405	<i>6</i> /3

0 4 3

When the complex ion **B** reacts with DNA, the water molecule is replaced as a bond forms between platinum and a nitrogen atom in a guanine nucleotide. The remaining chloride ligand is also replaced as a bond forms between platinum and a nitrogen atom in another guanine nucleotide.

Figure 1 represents two adjacent guanine nucleotides in DNA.

[2 marks]

Temperature <i>T /</i> K	$\frac{1}{T}/\kappa^{-1}$	Rate constant <i>k /</i> s⁻¹	ln <i>k</i>
293	0.00341	1.97 × 10 ^{−8}	-17.7
303	0.00330	8.61 × 10 ^{−8}	-16.3
313	0.00319	3.43 × 10 ⁻⁷	-14.9
318		6.63 × 10 ⁻⁷	
323	0.00310	1.26 × 10 ⁻⁶	-13.6

Complete Table 1.

[2 marks]

0 4. **6** The Arrhenius equation can be written in the form

$$\ln k = \frac{-E_{a}}{RT} + \ln A$$

Use the data in **Table 1** to plot a graph of ln *k* against $\frac{1}{T}$ on the grid in **Figure 2**. Calculate the activation energy, E_a , in kJ mol⁻¹

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[5 marks]

Do not write outside the

box

Turn over ►

15

		Do not wr
0 5	A bomb calorimeter can be used for accurate determination of the heat char combustion of a fuel.	nge during
	A bomb calorimeter is a container of fixed volume that withstands the chang pressure during the reaction.	e in
	The fuel is mixed with pure oxygen in the calorimeter, ignited and the tempe change is recorded.	rature
	The total heat capacity (C_{cal}) of the calorimeter is calculated using a fuel for heat change is known.	which the
	In an experiment to calculate C_{cal} , 2.00 g of hexane (M_r = 86.0) is ignited. A temperature change (ΔT) of 12.4 °C is recorded.	
	Under the conditions of the experiment, 1.00 mol of hexane releases 4154 k energy when combusted.	Jof
0 5.1	The heat energy released in the calorimeter, $q = C_{cal} \Delta T$	
	Calculate the heat capacity (C_{cal}) in kJ K ⁻¹	
		[3 marks]
	C _{cal}	kJ K ⁻¹
0 5.2	When the experiment is repeated with 2.00 g of octane (M_r = 114.0) the temperature change recorded is 12.2 °C	
	Calculate the heat change, in kJ mol ⁻¹ , for octane in this combustion reactio	n.
	If you were unable to calculate a value for C_{cal} in Question 05.1 , use 6.52 kJ	K⁻¹ (this
	is not the correct value).	[2 marks]
	Heat change k	J mol ⁻¹

0 5.3	State why the heat change calculated from the bomb calorimeter experiment is not an enthalpy change. [1 mark]	Do not write outside the box
05.4	The thermometer used to measure the temperature change of 12.2 °C in Question 05.2 has an uncertainty of ± 0.1 °C in each reading. Calculate the percentage uncertainty in this use of the thermometer. Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer. [2 marks]	
	Percentage uncertainty	
	Turn over for the next question	8

06	Standard electrode potentials are measured by comparison with the standard hydrogen electrode.
06.1	State the substances and conditions needed in a standard hydrogen electrode. [3 marks]
	It is difficult to ensure consistency with the setup of a standard hydrogen electrode. A $Cu^{2+}(aq)/Cu(s)$ electrode (E^{e} = +0.34 V) can be used as a secondary standard.
	A student does an experiment to measure the standard electrode potential for the TiO ²⁺ (aq)/Ti(s) electrode using the Cu ²⁺ (aq)/Cu(s) electrode as a secondary standard.
	A suitable solution containing the acidified TiO ²⁺ (aq) ion is formed when titanium(IV) oxysulfate (TiOSO ₄) is dissolved in 0.50 mol dm ⁻³ sulfuric acid to make 50 cm ³ of solution.
06.2	Describe an experiment the student does to show that the standard electrode potential for the TiO ²⁺ (aq)/Ti(s) electrode is -0.88 V
	 The student is provided with: the Cu²⁺(aq)/Cu(s) electrode set up ready to use solid titanium(IV) oxysulfate (<i>M</i>_r = 159.9) 0.50 mol dm⁻³ sulfuric acid a strip of titanium
	 laboratory apparatus and chemicals. Your answer should include details of:
	 how to prepare the solution of acidified TiO²⁺(aq) how to connect the electrodes
	 measurements taken how the measurements should be used to calculate the standard electrode potential for the TiO²⁺(aq)/Ti(s) electrode.
	[6 marks]

Do not write outside the box

06.3	Give the half-equation for the electrode reaction in the TiO ²⁺ (aq)/Ti(s) electrode in acidic conditions.			rode in
				[1 mark]
0 6 . 4	lable 2 sr	nows some electrode potential data. Table 2		
		Electrode reaction	<i>E</i> • / V	1
		$2 H^+(aq) + 2 e^- \rightarrow H_2(g)$	0.00	
		$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34	
		NO ₃ [−] (aq) + 4 H ⁺ (aq) + 3 e [−] \rightarrow NO(g) + 2 H ₂ O(I)	+0.96	
		t with nitric acid. quation for the reaction between copper and nitric acid. on		[3 marks]
	Equation			
				1
		Turn over for Section B		

IB/M/Jun20/7405/3

Answer all questions in this section. Inly one answer per question is allowed. or each question completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS KENNER KENNER			
Teach question completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS YOU want to change your answer you must cross out your original answer as shown. Image: Constant of the start of the		Answer all questions in this section	٦.
CORRECT METHOD WRONG METHODS Image: Constant of the second sec			priate answer.
you wish to return to an answer previously crossed out, ring the answer you now wish to select a shown. \bigcirc but may do your working in the blank space around each question but this will not be marked. a not use additional sheets for this working. $\boxed{7}$ When heated, a sample of potassium chlorate(V) (KClO ₃) produced 67.2 cm ³ of oxygen, measured at 298 K and 110 kPa $2 \text{KClO}_3(s) \rightarrow 2 \text{KCl}(s) + 3 \text{O}_2(g)$ What is the amount, in moles, of potassium chlorate(V) that has decomposed? The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ $\boxed{1 \text{ mark}}$ $\boxed{4}$ 9.95 × 10 ⁻⁴ $\boxed{199 \times 10^{-3}}$ $\boxed{2}$ $\boxed{2}$			ø
shown. shown. shown. shown. when heated, in the blank space around each question but this will not be marked. o not use additional sheets for this working. The passured at 298 K and 110 kPa $2 \text{KClO}_3(\text{s}) \rightarrow 2 \text{KCl}(\text{s}) + 3 \text{O}_2(\text{g})$ What is the amount, in moles, of potassium chlorate(V) that has decomposed? The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ I mark] A 9.95 × 10 ⁻⁴ B 1.99 × 10 ⁻³ C 2.99 × 10 ⁻³	/ou war	nt to change your answer you must cross out your origina	al answer as shown. 💌
TWhen heated, a sample of potassium chlorate(V) (KClO3) produced 67.2 cm3 of oxygen, measured at 298 K and 110 kPa 2 KClO3(s) $\rightarrow 2$ KCl(s) + 3O2(g)What is the amount, in moles, of potassium chlorate(V) that has decomposed?The gas constant, $R = 8.31$ JK ⁻¹ mol ⁻¹ [1 mark]A 9.95 × 10 ⁻⁴ B 1.99 × 10 ⁻³ C 2.99 × 10 ⁻³	-		answer you now wish to select
oxygen, measured at 298 K and 110 kPa $2 \text{KClO}_3(s) \rightarrow 2 \text{KCl}(s) + 3 \text{O}_2(g)$ What is the amount, in moles, of potassium chlorate(V) that has decomposed? The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ [1 mark] A 9.95 × 10 ⁻⁴ B 1.99 × 10 ⁻³ C 2.99 × 10 ⁻³ C 2.99 × 10 ⁻³			n but this will not be marked.
What is the amount, in moles, of potassium chlorate(V) that has decomposed?The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	7		ClO ₃) produced 67.2 cm ³ of
The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ [1 mark] A 9.95×10^{-4} • B 1.99×10^{-3} • C 2.99×10^{-3} •		$2 \operatorname{KClO}_3(s) \rightarrow 2 \operatorname{KCl}(s) + 3$	3O ₂ (g)
A 9.95×10^{-4} Imark] B 1.99×10^{-3} Imark] C 2.99×10^{-3} Imark]		What is the amount, in moles, of potassium chlorate(V) that has decomposed?
A 9.95×10^{-4} Image: Constraint of the second se		The gas constant $R = 8.31 \ \text{IK}^{-1} \text{ mol}^{-1}$	
B 1.99×10^{-3}			[1 mork]
C 2.99 × 10 ^{−3}			[1 mark]
D 4.48×10^{-3}		A 9.95×10^{-4}	
		A 9.95×10^{-4} B 1.99×10^{-3}	
		A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	
		A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	
		A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	
		A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	
		A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	
		A 9.95×10^{-4} B 1.99×10^{-3} C 2.99×10^{-3}	

08	Which has a bond ar	ngle of 109.5°?			[1 mark]	Do no outsio bo
	A C (diamond)				0	
	B C (graphite)				0	
	$C NH_2^-$				0	
	D NH ₃				0	
09	Which reaction has a silver iodide?	an enthalpy cha	nge equal to the	e standard entha	alpy of formation of [1 mark]	
	A Ag(g) + $\frac{1}{2}$ I ₂ (g) \rightarrow	Agl(s)			0	
	B Ag(s) + $\frac{1}{2}$ I ₂ (s) \rightarrow A	Agl(s)			0	
	C $Ag^+(g) + I^-(g) \rightarrow A$	Agl(s)			0	
	D Ag⁺(aq) + l⁻(aq) –	→ AgI(s)			0	
1 0	Some bond enthalpie	es are given.				
	Bond	C–H	O–H	0=0	C=0	
	Bond enthalpy/ kJ mol ⁻¹	412	463	496	743	
	Which is the enthalp	y change of this	s reaction in kJ r	nol⁻¹?		
		CH4(g) + 2C	$D_2(g) \rightarrow CO_2(g)$	+ 2H ₂ O(g)	[1 mark]	
	A +698				0	
					0	
	B +228					
	B +228 C -228				0	

				Do not write outside the
	In which conversion is the metal reduced?		[1 mark]	box
	$\mathbf{A} \mathrm{Cr}_2\mathrm{O7}^{2-} \rightarrow \ \mathrm{Cr}\mathrm{O4}^{2-}$	0		
	B $MnO_4^{2-} \rightarrow MnO_4^{-}$	0		
	C $TiO_2 \rightarrow TiO_3^{2-}$	0		
	D $VO_3^- \rightarrow VO^{2+}$	0		
1 2	The rate expression for the reaction between ${\bf X}$ and ${\bf Y}$ is			
	rate = $k [\mathbf{X}]^2 [\mathbf{Y}]$			
	Which statement is correct?		[1 mark]	
	A The rate constant has units $mol^{-1} dm^3 s^{-1}$	0		
	B The rate of the reaction is halved if the concentration of X is halved and the concentration of Y is doubled.			
	C The rate increases by a factor of 16 if the concentration of X is tripled and the concentration of Y is doubled.	0		
	D The rate constant is independent of temperature.	0		
1 3	Which statement about pH is correct?		[1 mark]	
	A The pH of a weak base is independent of temperature.	0		
	B At temperatures above 298 K, the pH of pure water is less than 7.	0		
	C The pH of 2.0 mol dm ^{-3} nitric acid is approximately 0.30	0		
	D The pH of 0.10 mol dm ⁻³ sulfuric acid is greater than that of 0.10 mol dm ⁻³ hydrochloric acid.	0		

			Do not write
1 4	A 0.10 mol dm ⁻³ aqueous solution of an acid is added slowly to 25 cm^3 0.10 mol dm ⁻³ aqueous solution of a base.	³ of a	outside the box
	Which acid–base pair has the highest pH at the equivalence point?	[1 mark	I
	A CH₃COOH and NaOH	0	
	B CH ₃ COOH and NH ₃	0	
	C HCl and NaOH	0	
	D HCl and NH_3	0	
1 5	In the test for a halide ion in aqueous solution, dilute nitric acid is adde addition of silver nitrate solution.	ed before the	
	Why is nitric acid added?	[1 mark	1
	A It increases the concentration of nitrate ions.	0	
	B It prevents the precipitation of silver compounds other than halides	. 0	
	C It prevents the silver nitrate being precipitated.	0	
	D It provides the acidic solution required for precipitation.	0	
1 6	Which shows the major product(s) formed when chlorine reacts with		
	cold, dilute, aqueous sodium hydroxide?	[1 mark	I
	A NaCl only	0	
	B NaClO only	0	
	C NaCl and NaClO	0	
	D NaCl and NaClO ₃	0	

3 2	Which is the concentration of NaOH(aq), in mol dm ^{-3} , that has pH =	14.30?	Do not wr outside th box
	$K_{ m w}$ = 1.00 $ imes$ 10 ⁻¹⁴ mol ² dm ⁻⁶ at 25 °C	[1 mark]	
	A –1.16	0	
	B 5.01×10^{-15}	0	
	C 2.00×10^{14}	0	
	D 2.00	0	
3 3	What are the units of the rate constant for a third order reaction?	[1 mark]	
	A mol dm ⁻³ s ⁻¹	0	
	B mol ⁻¹ dm ³ s ⁻¹	0	
	C $mol^2 dm^{-6} s^{-1}$	0	
	D mol ⁻² dm ⁶ s ⁻¹	0	
3 4	What is the pH of 0.015 mol dm ^{-3} sulfuric acid?	[1 mark]	
	A -1.82	0	
	B –1.52	0	
	C 1.52	0	
	D 1.82	0	
	Turn over for the next question		
		Turn over	

3 5	Which compound is formed when phenyl benzenecarboxylate is hydro acidic conditions?	olysed under	Do not write outside the box
		[1 mark]	
	A C ₆ H ₅ CH ₂ OH	0	
	B C ₆ H ₅ CHO	0	
	C C ₆ H ₅ COCH ₃	0	
		0	
36	A student rinsed the apparatus before starting an acid-base titration. The results of the titration showed that the volume of acid added from larger than expected.	the burette was	
	Which is a possible reason for this?	[1 mark]	
	A The conical flask was rinsed with water before the titration.	0	
	B The walls of the conical flask were rinsed with water during the titration.	0	
	C The pipette was rinsed only with water.	0	
	D The burette was rinsed only with water.	0	30
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

