Exam-style practice AS Level

1 a Probabilities sum to 1, so: $\sum P(X = x) = 0.1 + a + 0.15 + 0.2 + b = 1$ $\Rightarrow 04.5 + a + b = 1$ $\Rightarrow a + b = 0.55$

> $Y = 2X + 3 \Longrightarrow X = \frac{Y - 3}{2}$ E(X) = E $\left(\frac{Y - 3}{2}\right)$ = E(0.5Y - 1.5) = 0.5E(Y) - 1.5 = 0.5 × 4.48 - 1.5 (using E(Y) = 4.48) = 0.74

(1)

So
$$E(X) = \sum x P(X = x) = 0.74$$
 gives
 $\Rightarrow -2 \times 0.1 + (-1) \times a + 0 \times 0.15 + 1 \times 0.2 + 2 \times b = 0.74$
 $\Rightarrow -0.2 - a + 0.2 + 2b = 0.74$
 $\Rightarrow -a + 2b = 0.74$ (2)

Add equation (1) and (2) $3b = 1.29 \Rightarrow b = 0.43$ Substitute value of b in (1) a = 0.55 - 0.43 = 0.12Solution: a = 0.12 b = 0.43

b $E(X^2) = \sum x^2 P(X = x)$ = 4 × 0.1 + 1 × 0.12 + 1 × 0.2 + 4 × 0.43 = 2.44

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

= 2.44 - 0.74² = 2.44 - 0.5476
= 1.8924

c
$$Y-2 > X \Longrightarrow 2X+3-2 > X \Longrightarrow X > -1$$

P(Y-2>X) = P(X>-1) = P(X \ge 0)
= 0.15+0.2+0.43 = 0.78

2 a Let the random variable X denote the number of calls about insurance in a 10-minute interval, so $X \sim Po(3.2)$; and the random variable Y denote the number of calls about utility bills in a 10-minute interval, so $Y \sim Po(4.1)$

As the calls are independent of each other $P(X = 3 \cap Y = 3) = P(X = 3) \times P(Y = 3)$ $= \frac{e^{-3.2} \cdot 3.2^3}{3!} \times \frac{e^{-4.1} \cdot 4.1^3}{3!} = 0.22262 \times 0.19037 = 0.0424 \text{ (4 d.p.)}$

- **b** $X + Y \sim Po(3.2 + 4.1)$, i.e. $X + Y \sim Po(7.3)$ By calculator $P((X + Y) \ge 7) = 1 - P((X + Y) \le 6)$ = 1 - 0.4060 = 0.5940 (4 d.p.)
- c Let the random variable *T* denote the number of calls received in a one-hour period, so $T \sim Po(6 \times 7.3)$, i.e. $T \sim Po(43.8)$ By calculator $P(T < 45) = P(T \le 44) = 0.5520 (4 \text{ d.p.})$
- 3 Find the respective totals for each sport and gender in the sample.

	Hockey	Cricket	Squash	Totals
Male	61	45	32	138
Female	66	23	23	112
Totals	127	68	55	250

a H₀: There is no association between sport and gender.H₁: There is an association between sport and gender.

Further Statistics 1

3 b Calculate the expected values as follows:

$$P(\text{male and hockey}) = \frac{138}{250} \times \frac{127}{250}$$

Expected frequency of male and hockey $=\frac{138}{250} \times \frac{127}{250} \times 25 = \frac{138 \times 127}{250} = 70.104$

	Hockey	Cricket	Squash	Totals
Male	$\frac{138 \times 127}{250} = 70.104$	$\frac{138 \times 68}{250} = 37.536$	$\frac{138 \times 55}{250} = 30.36$	138
Female	$\frac{112 \times 127}{250} = 56.896$	$\frac{112 \times 68}{250} = 30.464$	$\frac{112 \times 55}{250} = 24.64$	112
Totals	127	68	55	250

All expected frequencies > 5

<i>O</i> _i	E_i	$\frac{(O_i - E_i)^2}{E_i}$
61	70.104	1.1822
66	56.896	1.4567
45	37.536	1.4842
23	30.464	1.8288
32	30.36	0.0886
23	24.64	0.1092

Test statistic = $\sum \frac{(O_i - E_i)^2}{E_i} = 6.1497 \ (4 \text{ d.p.})$

- **c** This is a 2×3 contingency table. The number of degrees of freedom = (2-1)(3-1) = 2
- **d** At the 2.5% level of significance for v = 2, the critical value is $\chi_2^2 = 7.378$ As 6.1497 < 7.378, this is not significant and H₀ should not be rejected.
- e At the 5% level of significance for v = 2, the critical value for $\chi_2^2 = 5.991$ As 6.1497 > 5.991, this is significant and therefore reject H₀
- 4 a Let the random variable X be the number of defects found in a the sample of 350 bowls, $X \sim B(750, 0.005)$

Mean = $E(X) = np = 750 \times 0.005 = 3.75$ Variance = $Var(X) = np(1-p) = 3.75 \times 0.995 = 3.73125$

Further Statistics 1

- 4 b Using the approximation $X \approx -Po(3.75)$ By calculator P(X > 3) = 1 - P(X ≤ 3) = 1 - 0.4838 = 0.5162 (4 d.p.)
 - **c** The mean n is large and p is small, so the mean is approximately equal to the variance. Hence, the Poisson distribution is a good approximation for the binomial distribution.
- 5 a Let probability of any single coin landing on heads = p, then an estimate of p is:

 $p = \frac{\sum(x \times f_x)}{\text{number of trials } \times \text{number of observations}}$ $= \frac{0 \times 6 + 1 \times 18 + 2 \times 35 + 3 \times 26 + 4 \times 15}{4 \times (6 + 18 + 35 + 26 + 15)}$ $= \frac{226}{400} = 0.565$

b H₀: A B(4, 0.565) distribution is a suitable model for the results.
H₁: A B(4, 0.565) distribution is not a suitable model for the results.

From part **a**, the null hypothesis is that B(4, 0.565) is a suitable model.

x	P (<i>x</i>)	\mathbf{E}_i
0	$1 \times 0.565^{\circ} \times 0.435^{4} = 0.035806$	3.5806
1	$4 \times 0.565^{1} \times 0.435^{3} = 0.186027$	18.6027
2	$6 \times 0.565^2 \times 0.435^2 = 0.362432$	36.2432
3	$4 \times 0.565^3 \times 0.435^1 = 0.313830$	31.3830
4	$1 \times 0.565^4 \times 0.435^0 = 0.101905$	10.1905

Since 3.5806 < 5 combine cells.

x	<i>O</i> _i	E_i	$\frac{\left(O_i - E_i\right)^2}{E_i}$
0 or 1	24	22.1833	0.14878
2	35	36.2432	0.04264
3	26	31.3830	0.92332
4	15	10.1905	2.26989

Number of degrees of freedom = number of cells -2 = 4 - 2 = 2 (*p* is estimated by calculation) From the tables: χ^2_2 (10%) is 4.605

$$\sum \frac{(O_i - E_i)^2}{E_i} = 3.3846 \ (4 \text{ d.p.})$$

As 3.3846 < 4.605, do not reject H₀. At the 10 % level of significance it appears that B(4, 0.565) is a suitable model for the data.