

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE In Mathematics A (4MA1) Higher Tier Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code 4MA1_2H_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

Question	Working	Answer	Mark		Notes
1	$73 \div 200 \ (=0.365) \text{ or } 73 \times 100 \ (=7300) \text{ or}$ 1 cm = 2 m oe " 0.365 " × 100 or " 7300 " ÷ 200			M1 M1	Allow their incorrectly $M2 \text{ for} 100 \div \frac{200}{73}$
	73÷2			111	converted 73 m \div 200 oe
		36.5	3	A1	
2		4 <i>n</i> + 3	2	B2oe	e.g. $7 + 4(n - 1)$ or $4n + (7 - 4)$ etc allow $T_n = 4n + 3$ or x = 4n + 3 etc
					If not B2 then award B1 for answer of $4n + k \ (k \neq 3)$ or $n = 4n + 3$
3	90 ÷ (2 + 13) (= 6) or $\frac{12 + x}{90 + x} = \frac{1}{3}$			M1	M2 for $\frac{13}{2}$ $$
	"6" × 2 (=12) or"6" × 13 (=78) or 3(12 + x) = 90 + x			M1	$\frac{2}{15} \times 90(=12) \text{ or } \frac{13}{15} \times 90(=78)$
	$(``78" \div 2) - ``12"$ or $2x = 54$ or $``78" \times 3/2 - ``78" - ``12"$ oe			M1	dep on a correct method for "78" and "12"
		27	4	A1	

Question	Working	Answer	Mark	Notes
4	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	Fully correct Venn diagram	4	B4 fully correct Venn diagram with labels A and B (If not B4 then B3 for 3 correct regions, B2 for 2 correct regions B1 for 1 correct region)
5	123 - 67 (=56) or $2x = 123 - 67$ or $2x + y = 67$ or $4x + y = 123$ oe (x = length of tile, y = width of tile) e.g. "56" \div 2 (=28) 67 - 56 (=11) or 67 - 2×"28" (=11) or 123 - 4×"28" (=11) (67 - 2×"11") × (123 - 2×"11") (45 × 101) or 123 × 67 - 12 × "28" ×" 11" (8241 - 3696)			 M1 M1 for method to find length or width M1 for method to find other dimension M1 dep on M2
		4545	5	A1

Question	Working	Answer	Mark	Notes
6 (a)	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \text{ or } 2 \times 2 \times 2 \times 3 \times 5$ e.g. 2 96 120 2 48 60 2 24 30 3 12 15 4 5 6 96 120 4 16 20 4 5			 M1 for one number written as product of prime factors number may be at the end of factor trees or on 'ladder' diagrams or Use of table method (allow 1 error), 2 examples shown but could have 2, 3, 4, 6, 12, 24 along the side or at least 2 factors for each (excluding 1, 96, 120)
(b)		24 646 800	2	A1 or $2^3 \times 3$ oe M1 for $2^m \times 3^n \times 5^p \times 7^q \times 11^r$ with at least two of m = 4, n = 1, p = 2, q = 2, r = 1 (or omission of one with others fully correct) NB: e.g. 2^4 could be 2×2^3 or prime numbers may be seen in a Venn diagram – if so must be correctly placed A1 or $2^4 \times 3 \times 5^2 \times 7^2 \times 11$ oe

Question		Working	Answer	Mark]	Notes
7	(a)	8500×0.023 (=195.5) or			M1		M2 for 8500×1.023^3
		8500 × 1.023 (=8695.5)					(M1 for 8500×1.023^n)
		$((8500 + "195.5") \times 1.023) \times 1.023$			M1	complete method	
			9100	3	A1	for 9100 – 9100.1 (a	nswer for 600(.1) gains M2A0)
	(b)	687 700 ÷ 0.92 (=747 500) or			M1	a correct first step	
		687 700 ÷ 1.15 (=598 000) or					
		1.15×0.92 (=1.058)					
		$687\ 7000 \div (0.92 \times 1.15)$			M1	Dep on M1 for comp	bletely correct method
			650 000	3	A1		-

Question		Working	Answer	Mark		Notes
8 ((a)	$0.65 = \frac{3.5}{V}$			M1	
		$(V =) \frac{3.5}{0.65}$			M1	
		0.05	5.38	3	A1	for answer in range 5.38 – 5.385 SCB1 for a "correct" equation involving V with digits 65 and 35 where units have been converted eg $V = \frac{3500}{0.65}$
((b)	$\begin{array}{l} 630 \times 1000 \ (=\!630 \ 000) \\ 60 \times 60 \ (=\!3600) \\ eg \\ 630 \div 60 \ (=\!10.5) \\ 630 \ 000 \div 60 \ (=\!10 \ 500) \\ 1000 \div 60 \ (=\!16.66) \\ 1000 \div (60 \times 60) \ (=\!0.277) \\ 1 \div (60 \times 60) \ (= 0.000277) \end{array}$			M1	for converting 630 km to m or 1 hour to seconds or for correct operation(s) using at least 2 of the numbers 630, 1000, 60, 60
		$\frac{630 \times 1000}{60 \times 60} \text{ oe}$			M1	Fully correct method
						(M2 for 630 ÷ 3.6)
			175	3	A1	

Question	Working	Answer	Mark		Notes
9	e.g. $4x + 5y = 4$ 4x - 2y = 18			M1	for correct method to eliminate one variable –
	4x - 2y = 10 with the operation of subtraction				multiplying one or both equations so the coefficient of <i>x</i> or <i>y</i> is the same in both with
	The second se				the intention to add or subtract to eliminate one
	4x + 5y = 4				variable(condone one arithmetic error) or
	10x - 5y = 45				isolating x or y in one equation and substituting
	With the operation of adding				into the other equation
	y = 2x - 9 and $4x + 5(2x - 9) = 4$				
				M1	(dep) for substitution of found variable into
					one equation or correct method to eliminate
		25 2	2	. 1	second variable
		x = 3.5 oe, $y = -2$	3	A1	Dep on M1
10	$3 \div 2 (=1.5)$ or eg $\frac{4-1}{2(-0)}$ or $c = 1$			M1	for correct method to find gradient – may see this on grid. For $c = 1$, could be $(L =) mx + 1$ oe
	2(-0)				or for $1.5x + c$
	y = "1.5"x + c or $y = mx + 1$			M 1	for use of $y = mx + c$ with either <i>m</i> or <i>c</i>
	or eg $y - 4 = m(x - 2)$				or for $(L =)$ 1.5 $x + 1$
		y = 1.5x + 1 oe	3	A1	oe eg $y-4 = \frac{3}{2}(x-2)$
					2

Question	Working	Answer	Mark		Notes
11	Basic comparisons from information: eg	Two	2	B2	For 2 comparisons in context
	The median is greater for Science/less for Maths	comparisons			or
	The IQR (or range) is higher for Science/less for	one for IQR			1 basic comparison and 1 comparison in context
	Maths	and one for			
	The median is 2.5 marks higher for Science	median			
	The IQR (or range) is 7 marks more for Science				(B1 for 1 or 2 basic statements or for 1
	Comparisons in context: eg				statement in context)
	On the whole students have higher marks in				
	Science				NB; any numbers used must be correct for the
	The spread of results is greater for Science				award of the mark
	Results are more consistent for Maths				

Question	Working	Answer	Mark	Notes
12 (a)		1	1	B1
(b)		$27x^6y^{15}$	2	B2 If not B2 then
				B1 for any two correct terms in a product
(c)	$2(e^2-9)$ or $(2e-6)(e+3)$ or $(e-3)(2e+6)$			M1
		2(e-3)(e+3)	2	A1
(d)	$m^{2} = \frac{6a+r}{5r}$ $m^{2} \times 5r = 6a+r$			M1
	m = 5r			
	$m^2 \times 5r = 6a + r$			M1
	$5rm^2 - r = 6a$			M1
		$r = \frac{6a}{5m^2 - 1}$	4	A1 or for $r = \frac{-6a}{1-5m^2}$ oe
		$5m^2 - 1$		$1 - 5m^2$
				NB: to award A1 we must see
				$r = \frac{6a}{5m^2 - 1}$ in working if $\frac{6a}{5m^2 - 1}$
				alone is given as answer

Question	Working	Answer	Mark		Notes
13	$4 \times 5 + 13 \times 6 + 16 \times 7 + 8x + 6 \times 9$			M1	at least 3 products correct with
	(20 + 78 + 112 + 8x + 54) or				intention to add
	264 + 8x				
	$(4 + 13 + 16 + 6 + x) \times 7 (=7(39 + x) = 273 + 7x)$ or			M 1	for use of mean
	$(4+13+16+6) \times 7(=273)$ oe or $\frac{"264+8x"}{"39+x"}$				
	$\frac{"264+8x"}{"39+x"} = 7 \text{ oe eg} (264+8x) = ((39+x)) \times 7$			M1	
	or "273" – "264"				
		9	4	A1	

Question		Working	Answer	Mark		Notes
14	(a)		0.65 0.35, 0.65 0.35, 0.65	2	B2oe	for all correct If not B2 then award B1 for 0.65 in any of the 3 possible positions NB all values may be given as fractions
	(b)	0.35×0.35 or 0.35×0.65 or 0.65×0.35 or 0.65×0.65 $0.35 \times 0.35 + 0.35 \times 0.65 + 0.65 \times 0.35$ or $1 - 0.65 \times 0.65$			M1 M1	fractions ft from (a) ft from (a)
		$1 - 0.65 \times 0.65$	0.5775	3	A1	oe e.g. $\frac{231}{400}$, 0.58 or 58% or better

Question	Working	Answer	Mark	Notes
15 (a)	e.g. $\frac{1}{2} \times (x+5+3x-2) \times (2x-3)$ or $0.5(4x+3)(2x-3)$ oe			M1 correct algebraic expression for area
	eg. $\frac{1}{2} \times (8x^2 - 12x + 6x - 9) = 133$			M1 for correct equation with brackets expanded
	or $8x^2 - 12x + 6x - 9 = 266$	shown	3	A1 for completion to given equation dep on M2
(b)	$\frac{6\pm\sqrt{368800}}{2\times8} \text{ or } \frac{6\pm\sqrt{36+8800}}{16} \text{ or } \frac{6\pm\sqrt{8836}}{16}$ or $(4x-25)(2x+11)$ (=0)			M2 If not M2 then award M1 for $\frac{6\pm\sqrt{(-6)^2-4\times8\times-275}}{2\times8}$ Condone one sign error in substitution; allow evaluation of individual terms e.g. 36 in place of $(-6)^2$ [allow -6^2 or 6^2 in place of $(-6)^2$, throughout allow + rather than \pm] or $(4x \pm 25)(2x \pm 11)$ (=0) (if student gains M1 and shows both answers the 2 nd M1 can be awarded) ft from an incorrect 3 term quadratic equation
		6.25 oe	3	A1 dep on M1 and 6.25 oe alone given as final answer

Question	Working	Answer	Mark		Notes
16	e.g. $\sqrt[3]{\frac{960}{405}} \left(= \frac{4}{3} \right)$ (=1.3)or $\sqrt[3]{\frac{405}{960}} \left(= \frac{3}{4} \right)$ (=0.75)			M1	for a correct linear scale factor
	$\left(\frac{3}{4}\right)^2 \times 928 \text{ or } 928 \div \left(\frac{4}{3}\right)^2 \text{ oe}$			M1	for a complete method
		522	3	A1	
17 (a)		-11	1	B1	
(b)		0.5 oe	1	B 1	
(c)	$g(-1.5) = 1 \div (1 - 2 \times -1.5) (=0.25)$ or			M1	g(-1.5) must be the correct
	$fg(x) = 4 - 3 \times \left(\frac{1}{1 - 2x}\right) oe$				calculation alone.
		3.25 oe	2	A1	
18	7.5 or 8.5 or 4.65 or 4.55			M1	
	25 or 15			M 1	
	$\frac{4.55}{25-7.5}$			M1	for $\frac{LB_1}{UB - LB_2}$ with $4.55 \le LB_1$
					< 4.6 and
					$20 < UB \leq 25$ and $7.5 \leq LB_2 <$
					8
		0.26 oe	4	A1	for 0.26 from correct working

Question	Working	Answer	Mark	Notes
19	At least 2 of: $2.5 \times 2 (=5)$ or $4 \times 3 (=12)$ or $3.4 \times 5 (=17)$ or $2.2 \times 5 (=11)$ or $(1 \times) 15$ or $(1 \times) 10 (=10)$ or e.g. at least 2 of 100, 240, 340, 220, 300 or 200			M1 for working with area of at least 2 bars could be using freq density × mins or use of counting squares or blocks
	2.5 \times 2 + 4 \times 3 + 3.4 \times 5 + 2.2 \times 5 + (1 \times) 15 or 5 + 12 + 17 + 11 + 15 (=60) or e.g. 100 + 240 + 340 + 220 + 300 (=1200)	$\frac{1}{6}$ oe	3	M1 for method to find total number of people (allow one error) or total number of squares/blocks for method used (allow one error) A1 for $\frac{1}{6}$ or 16.6% or 0.16 or 1 in 6 (percentage or decimal rounded or truncated to 3 or more sig figs)

Question	Working	Answer	Mark	Notes		
20	angle $CDB = x$ or angle $CAB = x$ angle $CBA = 180 - 2x$ angle $CDA = 180 - (180 - 2x) = 2x$	proof with reasons	5	M1 M1 M1 B1 dep on M1 for any one appropriate circle theorem reason A1 for complete proof with full reasons <u>alternate segment</u> theorem, angles in a <u>triangle</u> sum to <u>180°</u> , isosceles triangle, opposite angles of a cyclic quadrilateral sum		
	Alternative method angle $CDB = x$ or angle $CAB = x$ angle $ACB = x$ angle $ACQ = 2x$ and angle CDA = 2x Alternative method angle $OCB = 90 - x$ angle $BOC = 180 - 2(90 - x)$ (=2x)	proof with reasons	5	 M1 M1 M1 B1 dep on M1 for any one appropriate circle theorem reason A1 for complete proof with full reasons <u>alternate segment theorem, isosceles triangle</u> M1 M1 		
	angle $AOB = 2x$ and angle $CDA = 2x$	proof with reasons	5	 M1 B1 dep for any one appropriate circle theorem reason A1 for complete proof with full reasons angle between <u>tangent and radius is 90° oe</u>, angles in a <u>triangle</u> sum to <u>180°</u>, <u>isosceles triangle</u>, angle at <u>centre is twice</u> angle at <u>circumference oe</u> 		

Q20 contd	Alternative method where students assume $CDA = 2x$ and must work to show that $BCQ = x$							
	eg angle ABC = $180 - 2x$			M 1				
	Angle CAB = angle ACB =			M 1				
	$[180 - (180 - 2x)] \div 2 = x$							
	BCQ = CAB = x			M1				
				B1	Dep on M1 for any one appropriate circle theorem reason			
				A1	For complete proof with reasons			
					e.g. <u>opposite angles</u> of <u>cyclic quad</u> rilateral sum to 180°			
					angles in <u>triangle</u> sum to <u>180°</u>			
					isosceles triangle			
					alternate segment theorem			
21	$y = \frac{6}{4}x(+33)$ or (gradient =) $\frac{6}{4}$ oe			M1				
	$m \times \frac{6}{4} = -1$ or (gradient of $\mathbf{M} = -\frac{2}{3}$ oe			M1				
	$k - 6 " 2 \; "$			M 1	or complete method to find equation of line $(3y = -2x + 28)$			
	$\frac{k-6}{-4-5} = "-\frac{2}{3}"$			dep	and then substitution of $x = -4$			
		12	4	A1				

Question	Working	Answer	Mark		Notes
22	$\frac{\pi r^2}{\pi r^2 + \pi r l} = \frac{3}{8} \text{ or } \pi r^2 : \pi r^2 + \pi r l = 3:8 \text{ or}$			M1	
	$\pi r^2: \pi r l = 3:5$ or $\pi r^2 = 3$ and $\pi r l = 5$				
	$8\pi r^2 = 3(\pi r^2 + \pi r l)$ or $5\pi r^2 = 3\pi r l$ or			M1	
	$[r = \sqrt{\frac{3}{\pi}} \ (= 0.9772)$ and $l = \frac{5}{\pi r}]$				
	$rac{r}{l} = rac{3}{5}$ oe or $l = rac{5}{\pi\sqrt{rac{3}{\pi}}}$ (=1.62)			M1	
	e.g. $\sin\left(\frac{AVB}{2}\right) = \frac{3}{5}$ oe eg $\sin\left(\frac{AVB}{2}\right) = \frac{\sqrt{\frac{3}{\pi}}}{\frac{5}{\pi\sqrt{\frac{3}{\pi}}}}$			M1	$\sin^{-1}(\frac{3}{5}) = 36.86$
	$2 \times \sin^{-1}\left(\frac{3}{5}\right)$ oe			M1	
		73.7	6	A1	awrt

Question	Working	Answer	Mark	Notes
23	e.g. $\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$ or			M1 for a correct vector equation for \overrightarrow{AB}
	$ \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} -1 \\ 7 \end{pmatrix} $			
	$\overrightarrow{AB} = \begin{pmatrix} 1\\ 4 \end{pmatrix}$			A1
	$\overrightarrow{DC} = 3 \times \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 3 \\ 12 \end{pmatrix} \end{pmatrix}$			M1
	$\overrightarrow{BC} = \begin{pmatrix} 1 \\ -7 \end{pmatrix} + \begin{pmatrix} 3 \\ 12 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \text{ oe or }$			M1
	$\overrightarrow{BC} = \begin{pmatrix} -1 \\ -4 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} 3 \\ 12 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \end{pmatrix}$			
	oe		_	
		$\sqrt{41}$ cao	5	A1 No isw

