

© Dr T J Price, 2011

First, some important words; know what they mean (get someone to test you):

Integer – a whole number.

2, 0 and -17 are **integers**, but $\frac{1}{2}$, 0.247, $\sqrt{3}$ and π are not

Factor – a whole number that 'goes into' another number exactly. the **factors** of 6 are 1, 2, 3 and 6

Prime Number – a whole number with exactly two factors, namely 1 and itself. 2, 3, 5, 7 and 11 are **prime numbers**, but 1, 4, 6, 8 and 9 are not

Highest Common Factor (HCF) – the biggest number that goes into two (or more) others. the **HCF** of 20 and 28 is 4

Lowest Common Multiple (LCM) – the smallest number that two (or more) others go into. the LCM of 20 and 28 is 140

Product – the result of multiplying several numbers together. the **product** of 2 and 3 is 6

Square Number – a whole number squared (or multiplied by itself). 1, 4, 9 and 16 are **square numbers** because they are given by 1×1, 2×2, 3×3, 4×4

Surd – a 'nasty' root, one whose decimal goes on for ever without repeating. $\sqrt{2}$ (= 1.41421356...) and $\sqrt{3}$ (= 1.7320508...) are **surds**, but $\sqrt{4}$ (= 2 exactly) is not

Recurring Decimal – one which contains a digit (or block of digits) repeating for ever. $1/_3 = 0.33333...$ and $1/_7 = 0.142857142857...$ are **recurring decimals**

Significant Figures (sig figs or sf) – start counting from the first non-zero digit. The number 0.000016573 has 5 significant figures

Decimal Places (dp) – start counting from the decimal point. The number 0.000016573 has 9 **decimal places**

Indices (plural of **index**) – little raised numbers representing powers (squared, cubed, etc.). in the example 3², 3 is the **base** and 2 is the **index**

Standard Form – a number written as $A \times 10^{N}$, where $1 \le A < 10$ and N is a whole number. 32000 = 3.2×10^{4} and $0.00198 = 1.98 \times 10^{-3}$ when converted to **standard form**

Reciprocal – 'one over' a number, 1 divided by a number; you 'flip' a fraction to do this. the **reciprocal** of 4 is $\frac{1}{4}$; the **reciprocal** of $\frac{7}{_{11}}$ is $\frac{11}{_7}$

Numerator – the top number in a fraction. the **numerator** of ³/₄ is 3

Denominator – the bottom number in a fraction. the **denominator** of $\frac{3}{4}$ is 4

Common denominator – the LCM of several denominators, used if we add/subtract fractions. to add $^{2}/_{3}$ and $^{1}/_{5}$, we use a **common denominator** of 15

Mixed Number or **Mixed Fraction** – a number consisting of an integer and a fraction. $1\frac{1}{2}$ is a **mixed number**, while $\frac{3}{2}$ is an **improper** (or **top-heavy**) **fraction**

Evaluate – work out the value of.

to **evaluate** 3.4×1.4^2 , work it out according to BIDMAS = $3.4 \times 1.96 = 6.664$

Estimate – work out the rough value of (round numbers in the question to 1 sig fig, usually). to **estimate** 3.9 × 9.1, first round the values and then work out 4 × 9 = 36

ARITHMETIC

ROUNDING AND ESTIMATION

 \triangleright

Rounding numbers We are often asked to round our answers in IGCSE exams. Remember: A number rounds **up** if the next digit is **5 or above**. A number rounds **down** if the next digit is **4 or below**. IGCSE INSIDER INFO: Really important, this one... You can't (usually) lose marks for being too accurate! [The mark scheme will say 'award marks for 3 sig figs or greater'] So: if in doubt, just write down all the digits of your answer. WARNING: The exception to this is when you have just given an accurate answer and then you are asked to round it. SKILL: Round a number to N decimal places. Start counting digits after the **decimal point**, then round up/down as appropriate. Q: Round 31.5735189 to 3 decimal places. 31.573 5189 A: Chop the number off after 3 decimal places: Now round up because a 5 comes next. 31.574 • Sneaky super-rounding situation: 99.9999 rounded to 2 dps becomes 100.00. (You may have to pad out the number with zeros to give it the right number of dps.) SKILL: Round a number to N significant figures. Start counting from the **first non-zero digit**, then round up/down as appropriate. Q: Round 0.00084631 to 2 significant figures. A: Chop the number off after 2 significant figures: 0.00084 631 Now round up because a 6 comes next. 0.00085 • Ever-so-slightly evil example: 137423 rounded to 3 sf becomes 137000, not 137. (You have to pad out the number with enough zeros to make it the **right size**.) SKILL: Estimate the answer to a calculation. **Round** all the numbers in the question to **1 significant figure**, then find the answer. Q: Estimate (3.187 + 6.893) × 0.2096. A: Round to 1 sig fig first: $\approx (3 + 7) \times 0.2 = 10 \times 0.2 = 2$. The ≈ symbol means "approximately equal to".

• Make sure you don't round 0.2096 down to zero by mistake... It's sig figs, not dp!

UPPER AND LOWER BOUNDS

PRIMES AND FACTORS

\triangleright	A factor is a whole number that 'goes into' another number exactly. For example, the factors of 10 are 1, 2, 5 and 10.
	SKILL: List all the factors of a number.
	Q: List all the factors of 72.
	A: Do this in pairs as follows (each pair multiplies to make 72): 1, 72 2, 36 3, 24 4, 18 6, 12 8, 9
\triangleright	A prime number has exactly two factors, namely 1 and itself. The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, etc.
	4 isn't prime because 2 goes into it; 6 isn't prime because 2 and 3 go into it.
	1 isn't a prime number because it has only one factor, not two.
\triangleright	As you might guess, a prime factor is a factor which is a prime number.
	Every number can be written by multiplying its prime factors together. It's a bit like making compounds out of chemical elements. Instead of water = H_2O , we can write $12 = 2^2 \times 3$
	TJP TOP TIP: Set out your working like this; it's a method similar
	to LCM and HCF (see below): learn one, get two free!
	Q: Write 420 as a product of its prime factors.
	A: 2 420 (2 goes into 420, leaving 210 in the next line) 2 210 (2 goes into 210, leaving 105) 3 105 (3 goes into 105, etc.) 5 35
	7 7 (7 goes into 7, leaving 1)
	1 (No primes go into 1, so we stop)
	$420 = 2 \times 2 \times 3 \times 5 \times 7$
	 Remember to divide by prime numbers only, working your way up from 2. If we are acless to write a number science of a long fractions for the science of the scie
	If we are asked to write a number using powers of prime factors, use indices: 400 – 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	4∠∪ - ∠ -×3×3×1

HCF AND LCM

INDICES

Multiply by adding the indices:	$7^4 \times 7^5 = 7^9$	
Divide by subtracting the indices:	$7^{12} \div 7^2 = 7^{10}$	LEARN!
Do brackets by multiplying the indices:	$(7^3)^5 = 7^{15}$	
There are three further facts to know ab	out indices:	
Negative indices mean '1 over':	$7^{-2} = 1 / 7^2 = \frac{1}{49}$	
ractional indices are roots:	$9^{1/2} = \sqrt{9} = 3$	LEARN!
Zero indices always equal 1:	7 ⁰ = 1	
 The number underneath the fraction = r 'The Power of Love' (= 0; think tennis) g [Huey Lewis and the News, Frankie Goes to Ho 	poots underneath a tree got to No. 1 in the chart llywood, Jennifer Rush, Cé	s. S. Jine Dion, etc.]
SKILL: Simplify expressions involving	indices.	
Jse the above laws and facts to do this. $a^4 = a^9$	indices.	
Use the above laws and facts to do this. Q: Simplify $\frac{6^4 \times 6^9}{6^5}$.	indices.	
Use the above laws and facts to do this. Q: Simplify $\frac{6^4 \times 6^9}{6^5}$. A: $\frac{6^4 \times 6^9}{6^5} = 6^{(4+9-5)} = 6^8$.	indices.	
Jse the above laws and facts to do this. Q: Simplify $\frac{6^4 \times 6^9}{6^5}$. A: $\frac{6^4 \times 6^9}{6^5} = 6^{(4+9-5)} = 6^8$. Q: Simplify $81^{-1/2}$, giving your answer as	indices. a fraction.	
SKILL: Simplify expressions involving Use the above laws and facts to do this. Q: Simplify $\frac{6^4 \times 6^9}{6^5}$. A: $\frac{6^4 \times 6^9}{6^5} = 6^{(4+9-5)} = 6^8$. Q: Simplify $81^{-1/2}$, giving your answer as A: $81^{-1/2} = \frac{1}{81^{1/2}} = \frac{1}{\sqrt{81}} = \frac{1}{9}$.	indices. a fraction.	
3KILL: Simplify expressions involving Use the above laws and facts to do this. 4 : $\frac{6^4 \times 6^9}{6^5} = 6^{(4+9-5)} = 6^8$. 4 : Simplify $81^{-1/2}$, giving your answer as 4 : $81^{-1/2} = \frac{1}{81^{1/2}} = \frac{1}{\sqrt{81}} = \frac{1}{9}$. 5 : Simplify $16^{3/2}$.	indices. a fraction.	
Jse the above laws and facts to do this. Q: Simplify $\frac{6^4 \times 6^9}{6^5}$. A: $\frac{6^4 \times 6^9}{6^5} = 6^{(4+9-5)} = 6^8$. Q: Simplify $81^{-1/2}$, giving your answer as A: $81^{-1/2} = \frac{1}{81^{1/2}} = \frac{1}{\sqrt{81}} = \frac{1}{9}$. Q: Simplify $16^{3/2}$. TIP TOP TIP: With fractional indices such 'Power from above, roots down below.	indices. a fraction. ch as 3/2, remember it's	s like a tree:

A:
$$16^{3/2} = (\sqrt{16})^3 = 4^3 = 64$$
.

STANDARD FORM

\triangleright	Standard Form is a convenient way of writing really big and really small numbers. (These often occur in astronomy and atomic physics, for instance.)
	For example, $51000 = 5.1 \times 10^4$ and $0.00000492 = 4.92 \times 10^{-6}$.
	A number is in standard form if it is written as $A \times 10^{N}$, where $1 \le A < 10$ and N is a whole number (in other words, there is one digit before the decimal point).
	SKILL: Convert a number to standard form.
	 TJP TOP TIP: Move the decimal point until it's after the first non-zero digit. Count how many times you moved it – this gives the index. Small numbers (<1) have a negative index. Big numbers (>1) have a positive index.
	 Q: Convert 299000000 to standard form. A: 299000000. We need to move the decimal point 8 times. The number is big, so the index is 8, not –8. So the answer is 2.99 × 10⁸.
	SKILL: Convert a number out of standard form.
	 TJP TOP TIP: Move the decimal point the number of times given by the index. If the index is negative, move the decimal point to make a small number. If the index is positive, move the decimal point to make a big number.
	Q: Convert 7.4 \times 10 ⁻³ to a normal number.
	A: Move the decimal point 3 times to make a small number. 0.0074 The answer is 0.0074 .
	SKILL: Combine (algebraic) numbers written in standard form.
	Q: Work out A × 10 ⁶ + B × 10 ⁷ (where $1 \le A < 10$ and $1 \le B < 9$).
	A: The answer will be 'something × 10 ⁷ ' so we convert both parts to 'something × 10 ⁷ '. (A÷10) × 10 ⁷ + B × 10 ⁷ We multiplied 10 ⁶ by 10, so we have to divide A by 10 to compensate. So the answer is (B + A ÷10) × 10 ⁷ .
	Q: Work out $(A \times 10^6) \times (B \times 10^7)$ (where $4 \le A < 10$ and $4 \le B < 10$).
	 A: We begin by getting (A × B) × 10¹³, but we need to adjust this since A × B > 10. So we divide A × B by 10 and multiply 10¹³ by 10 to compensate. The answer is (A × B ÷ 10) × 10¹⁴.
(IGCSE INSIDER INFO: IGCSE examiners like these algebraic questions nowadays

SURDS

A **surd** is a root of a whole number which is not a whole number; a 'messy' root. So $\sqrt{2}$ (= 1.41421356...) and $\sqrt{3}$ (= 1.7320508...) are **surds**, but $\sqrt{4}$ (= 2 exactly) is not. (The word comes from the same root as 'absurd'; in other words, not rational.)

SKILL: Simplify a surd.

TJP TOP TIP: Find the biggest square number that goes into the number. You can then square root this part **exactly**.

Q: Simplify $\sqrt{32}$.

A: $\sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4\sqrt{2}$

SKILL: Rationalise the denominator of a surd.

TJP TOP TIP: If there is a surd on the bottom of a fraction, multiply top & bottom of the fraction by this same surd. This gets the surd on the top instead. Why bother? So that we can add it to other surds (see next skill).

Q: Simplify
$$\frac{2}{\sqrt{6}}$$
.
A: $\frac{2}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}$

SKILL: Add or subtract surds.

TJP TOP TIP: Simplify the surds first!

Q: Simplify
$$\sqrt{27} + \sqrt{12} - \frac{6}{\sqrt{3}}$$
.
A: $\sqrt{9 \times 3} + \sqrt{4 \times 3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 3\sqrt{3} + 2\sqrt{3} - \frac{6\sqrt{3}}{3} = 3\sqrt{3}$

SKILL: Multiply or divide surds.

TJP TOP TIP: Simplify the surds last!

Q: Work out
$$\sqrt{6} \times \sqrt{42} \div \sqrt{7}$$
.
A: $\sqrt{6} \times \sqrt{42} \div \sqrt{7} = \sqrt{\frac{6 \times 42}{7}} = \sqrt{36} = 6$

Q: Simplify
$$(3+\sqrt{5})(3-\sqrt{5})$$
.
A: $(3+\sqrt{5})(3-\sqrt{5}) = 3\times 3 + 3\times(-\sqrt{5}) + 3\times\sqrt{5} - \sqrt{5}\times\sqrt{5}$ (using FOIL)
 $= 9-5 = 4$.

FRACTIONS

RECURRING DECIMALS

A recurring decimal is one which cont Any recurring decimal can be written a again we have to show all our workin	ains a digit (or block s a fraction ; your c ig to get any marks.	c of digits) repeating for ever. alculator will do this, but once		
SKILL: Convert a recurring decimal t	SKILL: Convert a recurring decimal to a fraction.			
<u>TJP TOP TIP</u> : Set out your working lik The idea is to cunningly cancel out all t	ke this. hose repeating digit	S		
Q: Convert 0.433333 to a fraction in i	ts lowest terms.			
A: We start by writing	F = 0.433333			
If we multiply by 10 we get	10F = 4.333333			
Now subtract (bottom – top):	9F = 3.9	(we cancel all those '3's)		
Rearrange to get	F = 3.9 / 9			
But that isn't a fraction; adjust it:	F = 39 / 90			
So the fraction in its lowest terms is	<u>13</u> 30			
Q: Convert 0.45454545 to a fraction	in its lowest terms.			
A: We start by writing	F = 0.454545	45		
If we multiply by 100 we get	100F = 45.454545	45		
Now subtract (bottom – top):	99F = 45	(zap the pesky decimals)		
Rearrange to get	F = 45 / 99			
Now cancel down:	F = 5 / 11			
So the fraction in its lowest terms is	<u>5</u> 11			
How do we know whether to multiply by	/ 10 or by 100, etc.?)		
If a single digit repeats, multiply by 10. If two digits repeat, multiply by 100. If three digits repeat, multiply by 1000.	(Spot the pattern	.)		
We can also deal with algebraic questions as follows:				
Q: Convert 0.abcabcabcabc to a fract	tion in terms of a, b	and c.		
A: We write	F = 0.abca	bcabcabc		
Multiply through by 1000:	1000F = abc.abcal	bcabcabc		
Subtract (bottom – top)	999F = abc			
Therefore	$F = \frac{abc}{999} .$			

PERCENTAGES

- Percent' is simply Latin for 'out of a hundred'. (It's also written as %.) Remember this and there should be no problem.
- SKILL: Convert between percent, fractions and decimals.

% to Fraction:	Write as a fraction out of 100, then cancel down. 35% = 35/100 = 7/20
Fraction to %:	Multiply the fraction by 100. 7/8 = 7/8 of 100% = (7÷8)×100% = 87.5%
% to Decimal:	Move the decimal point twice to make the number smaller (\div 100). 27% = 27 \div 100 = 0.27
Decimal to %:	Move the decimal point twice to make the number bigger (×100). $0.07 = 0.07 \times 100\% = 7\%$

Remember: percentages are 100× bigger than decimals.

SKILL: Find a certain percentage of a number.

TJP TOP TIP: Write the % as a fraction over 100, and multiply by it.

Q: Find 23% of £120.

A: 120×(23/100) = **£27.60**.

SKILL: Increase or decrease a number by a certain percentage.

Work out the percentage amount (see above) then **add** it to the original number to **increase** or **subtract** it to **decrease**.

- Q: Increase £32 by 40%.
- A: 40% of £32 = 32×(40/100) = £12.80. Now add it on! £32 + £12.80 = **£44.80**.
- Q: Decrease 70kg by 6%.

A: 6% of 70kg = 70×(6/100) = 4.2kg. Now subtract it! 70 − 4.2 = **65.8kg**.

TJP TOP TIP: A more powerful way is to think about how many percent we'll have altogether at the end, **including** the original amount (100%).

Q: Increase £32 by 40%.

A: At the end, we'll have 100 + 40 = 140%. So we find 32×(140/100) = **£44.80**.

Q: Decrease 70kg by 6%.

A: At the end, we'll have 100 – 6 = 94%. So we find 70×(94/100) = **65.8kg**.

SKILL:	Find a pe	rcentage chan	ge.	
	Percentage	e Change = -	Change Driginal Amount ×100	Learn!
(Use the or	' iginal amount,	not the final amount!)	
Q: A hc	ouse falls in	price from £25	0,000 to £210,000; find t	the percentage change.
A: The	change is f	£40,000, so $\frac{40}{25}$	$\frac{0000}{0000}$ × 100 = 16% fall .	
Q: The A: The	price of a l change is	itre of milk incre 6p, so $\frac{6}{80} \times 100$	eases from 80p to 86p; fi 0 = 7.5% increase .	ind the percentage change.
SKILL:	Solve a re	everse percent	age problem.	upped to find the original price
	lance, yeu			
TJP T	<u>op tip</u> : Th	nis is a classic	danger area!	
lf 20%	was taken	off, don't just a	dd 20%; this is wrong !	
Instead	, learn the	method below	Ι.	
Ω : A coat costs f64 in a sale after being reduced by 20%. Find the original price				
Δ· If 20	% was tak	en off f64 must	t be $100 - 20 = 80\%$ of t	he original price
/ \. II 20		000/		ne original price.
(£04 – (÷80)	00% (÷80)		
f	20.80 =	1%	(get 1%)	
((×100)	(×100)		
,	280 =	100%	(and now get 100)%)
So t	he original	price was £80.		
Q: Becki sells a camera for £170, making a 25% profit. How much did she buy the camera for originally?				
A: If 25% profit was added, £170 must be 100 + 25 = 125% of the original price.				
	£170 =	125%		0
((÷125)	(÷125)		
· · · · · · · · · · · · · · · · · · ·	21.36 =	1%	(get 1%)	
ł				
1 ((×100)	(×100)	(a)	20/ 2
; ((×100) £136 =	(×100) 100%	(and now get 100	0%)

COMPOUND INTEREST AND DEPRECIATION

\triangleright	If you put money in a savings account, you generally get some interest each year; this means you receive extra money on top of your original amount. Yippee!
	And that's not all; if you leave your money there for several years, you get interest on your interest, too Yippee squared!
	Anyway, this is called compound interest .
	IGCSE INSIDER INFO : Compound interest is a brand new topic this year (2011) so it's quite likely they'll be keen to include a question on it
	SKILL: Solve a compound interest problem.
	Q: Will puts £500 into a savings account paying 5% compound interest each year. How much money does he have after 10 years?
	A: Every year, the money is multiplied by $100 + 5 = 105\% = (105/100)$. This consists of the original money (100%) plus the interest (5%). So after 10 years, there will be $500 \times (105/100)^{10} = $ £814.45 .
	Q: Mel saves £200 for 5 years at a compound interest rate of 4%. How much interest does she receive in this time?
	A: Every year, the money is multiplied by 100 + 4 = 104% = (104/100). So after 5 years, there will be 200 × (104/100) ⁵ = £243.33.
	But the interest earned is 243.33 – 200 = £43.33 .
	SKILL: Solve a depreciation problem. When the value of something decreases over time, this is called depreciation.
	Q: Ed buys a laptop for £400 but it loses 15% of its value each year. How much is it worth after 3 years?
	A: Every year, the value is multiplied by $100 - 15 = 85\% = (85/100)$. So after 3 years the laptop is worth $400 \times (85/100)^3 = $ £245.65.
	If you prefer, you can work with decimals instead of fractions. For example, $400 \times 0.85^3 = $ £245.65 .

RATIOS

There are two types of ratio questions: sharing out and increase/decrease.

SKILL: Solve a 'sharing' ratio problem.

TJP TOP TIP: Add up the number of 'shares', and divide the amount to be shared by this number to get the size of one share. Then answer the question...

- Q: £90 is to be shared between Bella, Tori and Jack in the ratio 5:3:2. How much does Tori receive?
- A: There are 5 + 3 + 2 = 10 shares altogether. Each share is worth $90 \div 10 = \pounds 9$. Tori gets 3 shares, so she receives $3 \times 9 = \pounds 27$.
- SKILL: Solve an 'increase/decrease' ratio problem.

<u>TJP TOP TIP</u>: Scale all the quantities by the given ratio (turn it into a fraction). Get the fraction the right way up by considering whether the quantities should become larger or smaller.

- Q: A recipe to serve 4 people requires 500g of flour, 2 eggs and 200ml of milk. Adapt it to serve 10 people.
- A: We have to increase all quantities in the ratio 4:10, so multiply through by (10/4) to make the quantities bigger.

 $500 \times (10/4)$ = 1250g of flour, $2 \times (10/4)$ = 5 eggs, $200 \times (10/4)$ = 500ml of milk.

Converting units

We may be asked to convert between currencies, between units of length, area and volume, or between units of time. This is another form of increase/decrease ratio.

SKILL: Convert between units.

Q: If $\pounds 1.00 = \$1.60$ and \$1.00 = \$3 Japanese Yen, convert $\pounds 7.99$ to Japanese Yen.

A: Convert £7.99 to \$ by multiplying by (1.60/1.00): 7.99 × (1.60/1.00) = \$12.784 Convert \$12.784 to Yen by multiplying by (83/1): 12.784 × (83/1) = **1061 Yen**.

Q: Convert a speed of 10m/s to km/h.

A: There are 1000m in 1km. To convert m to km, divide by 1000: 10m/s = 0.01km/s There are 3600 seconds in 1 hour. You travel further in 1 hour than in 1 second. So we now multiply by 3600: 0.01km/s = **36km/h**.

Q: Convert an area of 3m² to cm².

A: There are 100^2 cm² in 1m² (area is squarier) so answer is 3×100^2 = **30000cm²**.

SETS

	A set is a collection of 'objects' containing no duplicates. The objects in the collection can be listed between curly brackets , for instance: $A = \{1, 3, 5, 7, 9\}$ We can also define a set using a rule , such as: $B = \{even numbers from 0 to 10 inclusive\}$ $C = \{n^2 : 1 \le n \le 10\}$ (this means the square numbers from 1 to 100)					
	Element = an object belonging to a set. Set {a, b, c} contains the elements a, b and c. We usually use BIG letters for sets and little letters for elements.	Learn!				
	ε = Universal Set . This is the 'world' for the current question, e.g. ε = {All animals}.					
	\emptyset = Empty Set = { }. This is the set with nothing in it.					
	A' = Not A = the complement of A.A' contains every element that isn't in A.					
	$A \cap B = A$ intersection $B =$ the 'overlap' of A and B. A \cap B contains all elements which are in A and in B.					
	$A \cup B = A$ union $B = A$ combined with B . A $\cup B$ contains all elements which are in A or in B (or in both).					
	a ∈ B = a is an element in set B = a is a member of B. 1 ∈ {odd numbers}					
	A ⊂ B = A is a subset of B = set A is contained inside set B . If A = $\{2, 3, 4\}$ and B = $\{1, 2, 3, 4, 5, 6\}$ then A ⊂ B.					
	$A \not\subset B = A$ is not a subset of $B = set A$ is not contained inside set B . If $A = \{2, 3, 7\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ then $A \not\subset B$.					
	n(A) = number of elements in A. If A = {a, b, c, d} then $n(A)$ = 4. If B = \emptyset then $n(B)$ = 0.					
	TJP TOP TIP : Here are some ways to remember these symbols:					
	$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}$ verything ($\boldsymbol{\varepsilon}$ is BIG).					
	$\epsilon = \epsilon$ lement (ϵ is small).					
	\cap = intersection = and = the overlap because \cap goes over the top.					
	\bigcirc = \bigcirc nion = a mixing bowl \bigcirc that you chuck everything into.					
	$A \subset B$ is like $A < B$ so A is contained in B.					

VENN DIAGRAMS

