

© Dr T J Price, 2011

IGCSE ALGEBRA
First, some important words; know what they mean (get someone to test you):
Expression – a fragment of algebra with no '=' sign. $3x+5$ is an expression, and so is πr^2 .
Formula – tells you the connection between two or more quantities. $A = \pi r^2$ is a formula giving the area of a circle in terms of its radius.
Equation – a mathematical statement with an '=' sign; it is only true for certain values. 3x+5 = 14 is an equation which is only true when $x = 3$.
Inequality – a mathematical statement with a '<', '>', ' \leq ' or ' \geq ' sign. 3x+5 < 14 is an inequality which is only true when $x < 3$.
Expand – get rid of brackets by multiplying out in full (opposite of Factorise).a) Expand $3(2x-5y)$ Answer $6x-15y$ b) Expand $(x-5)(x+2)$ Answer $x^2-3x-10$
Factorise – put into brackets (opposite of Expand).a) Factorise $6xy-4x^2$ Answer $2x(3y-2x)$ b) Factorise x^2+5x+4 Answer $(x+1)(x+4)$
Simplify – gather together any matching bits. a) Simplify $3x+4y-5x+6y$ Answer $-2x+10y$ b) Simplify $4x^3y^2 \times 3xy^4$ Answer $12x^4y^6$
Solve – work out what number(s) make an equation true.a) Solve $3x-7 = 26$ Answer $3x = 33$ so $x = 11$ b) Solve $(x+2)(x-9) = 0$ Answer $x = -2$ or $x = 9$
Term – a 'bit' of an equation or an expression separated by + or – signs. The second term of $3x-4y+5z$ is $-4y$.
Coefficient – the number part of a term. The coefficient of x in $2x^2-7x+9$ is -7.
Linear – something with x in it (but no higher powers or roots). 3x-5 is a linear expression.
Quadratic – something with x^2 in it (but no higher powers or roots). $3x^2+7x-8$ is a quadratic expression.
Function – a mathematical rule for changing an input number into an output number. f(x)=2x+1 takes an input number, doubles it and adds 1 to give an output number.
Domain – the set of all numbers that can go into a function (domalN). The domain of $g(x) = \sqrt{x-4}$ is $x \ge 4$ because we can't square root a negative number.
Range – the set of all number that can come out of a function. The range of $g(x)=\sqrt{x-4}$ is $g(x)\ge 0$ because the numbers coming out are 0 or above.
Inverse function – a mathematical rule that 'undoes' a given function (reverse flowchart). $f^{-1}(x)=(x-1)/2$ is the inverse function of $f(x)=2x+1$.
Differentiate – find a formula for the gradient (the derivative or dy/dx) of a given curve. If $y = 4x^5 - 2x^3 + 3x - 5$, then $\frac{dy}{dx} = 20x^4 - 6x^2 + 3$.

Turning point (maximum or minimum) – a point on a curve having zero gradient. The curve $y = x^2+3$ has a minimum at (0, 3) since $\frac{dy}{dx} = 2x = 0$ at x = 0.

ALGEBRA BASICS

	Algebra is a branch of mathematics where letters are used instead of numbers. Why? (i) we want a formula that works for any value of radius (let's say), so we call it r . (ii) we don't yet know the number we want (we're solving an equation to find x). (iii) we're plotting a graph where $x \& y$ are always changing , not fixed numbers.	
	You may not have thought about this much, but certain letters are used for certain thing Don't bother learning this list off by heart, but it might be useful as a reference.	зs.
	<i>a</i> , <i>b</i> , <i>c</i> , etc. are numbers which are fixed for a particular question (constants). Write down the values of <i>a</i> , <i>b</i> and <i>c</i> where $a x^2 + b x + c = 0$.	
	<i>a</i> , <i>b</i> , <i>c</i> are also the unknown sides of a triangle , whether right-angled or not. Find the hypotenuse <i>c</i> using Pythagoras' Theorem $a^2+b^2 = c^2$. <i>A</i> , <i>B</i> , <i>C</i> are the angles opposite sides <i>a</i> , <i>b</i> , <i>c</i> in a non right-angled triangle.	
	c is also the y-intercept of a straight line . Find c if $y = 2x+c$ passes through the point (1, 8).	
	f, g , h are functions . Find the inverse function of $f(x) = 4x-5$.	
	<i>h</i> can also be height . Evaluate $\frac{1}{3}\pi r^2 h$ to find the volume of the cone.	
	l is usually length . Curved surface area = $\pi r l$.	
	<i>m</i> can be the gradient of a straight line , or it can be mass . Express in the form $y = mx+c$.	
	<i>n</i> is a variable, unknown whole number . Find the 100 th term of the sequence $t_n = n^2 + 1$.	
	r is usually radius . Work out the value of πr^2 .	
	<i>s</i> can be distance . If $s = \frac{1}{2}(u+v)t$, rearrange this formula to make <i>u</i> the subject.	
	t is usually time . Sketch the graph for $0 \le t \le 10$.	
	<i>u</i> , <i>v</i> can be speed or velocity . Make <i>m</i> the subject in $I = mv - mu$.	
	w is usually width . Express the perimeter in terms of l and w .	
	<i>x</i> , <i>y</i> , <i>z</i> are used for co-ordinates as well as for unknown numbers in equations . Plot the line $y = 3x+5$; solve the equation $x^2+4x+3 = 0$.	
	CAPITAL LETTERS are often used for unknown length-based quantities such as: A = area, C = circumference, L = length, P = perimeter, V = volume.	
	θ , ϕ , α , β are Greek letters (theta, phi, alpha, beta) used for unknown angles . Find the value of angle θ , showing all your working.	

TIPS FOR WRITING ALGEBRA

\triangleright	We write $2x$ instead of $2 \times x$ to mean 'two lots of x ' or $x + x$. We leave out the times symbol because it might get confused with x .
\triangleright	We write x^2 instead of $x \times x$ or xx to mean 'x times itself'. Using indices is clearer and quicker once we get to x^9 instead of $xxxxxxxxxxx$
\triangleright	If you're multiplying a whole load of numbers and letters, remember: Put the number first, followed by the letters in alphabetical order. This makes it easier to see if two terms match (contain the same letters). So we'd write $3x^2yz$ rather than zyx^23 .
\triangleright	We hardly ever use the division symbol '÷'; instead we use a division bar , $\frac{x}{y}$.
\triangleright	An '=' sign in algebra is not an instruction to work out the answer (like on a calculator). '=' means 'is the same as' or 'balances', not 'makes' or 'write the answer here'. Never write '=' between two things that aren't the same! $2+2=4+3=7$ is wrong!
\triangleright	Use brackets to 'over-ride' BIDMAS. If you want to add <i>a</i> and <i>b</i> and then double them, you can write $2(a+b)$. (If you simply wrote $2a+b$, this would not be right according to BIDMAS.)

EXPRESSIONS, FORMULAE, EQUATIONS AND INEQUALITIES

These are all 'bits' of algebra, but we need to know the difference between them.

IGCSE INSIDER INFO: If you are asked for an expression and you give a formula or equation instead (or the other way round) you will **lose marks**!

- Expression: a fragment of algebra with no '=' sign. 3x+5 is an expression, and so is πr^2 .
- Formula: tells you the connection between two or more quantities; it has an '=' sign. $A = \pi r^2$ is a formula giving the area of a circle in terms of its radius.
- **Equation**: a mathematical statement with an '=' sign; it is only true for certain values. 3x+5 = 14 is an equation which is only true when x = 3.

TJP TOP TIP: EQUAtion has EQUAIs in it.

▷ **Inequality**: a mathematical statement with a '<', '>', '≤' or '≥' sign. 3x+5 < 14 is an inequality which is only true when x < 3.

<u>TJP TOP TIP</u>: The **wider** end of the inequality goes with the **bigger** number. (Personally, I don't do crocodiles, but if they work for you...)

WORDY QUESTIONS

 We may have to take a situation described in English and 'translate' it into algebra TJP TOP TIP: If in doubt, pretend that the letters are numbers and think about what you'd do with the numbers. Then swap the numbers for letters. SKILL: convert a wordy question into algebra. Q: If apples cost 20p each and bananas cost 15p each, how much do <i>a</i> apples at <i>b</i> bananas cost? A: [Suppose we had 2 apples and 3 bananas. We'd work out 20×2+15×3.] So <i>a</i> apples and <i>b</i> bananas would cost 20<i>a</i>+15<i>b</i> pence. Q: Farmer Chris has <i>g</i> geese and <i>h</i> horses. How many feet do they have? A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So <i>g</i> geese and <i>h</i> horses have 2<i>g</i>+4<i>h</i> feet. Q: If a square of side <i>x</i> has an area equal to its perimeter, find the value of <i>x</i>. A: [If a square has side 3, its area is 3² and its perimeter = <i>x</i>+<i>x</i>+<i>x</i>+<i>x</i>=4<i>x</i>, so we need to solve <i>x</i>²=4<i>x</i> (which we'll come to later on). 		
 TJP TOP TIP: If in doubt, pretend that the letters are numbers and think about what you'd do with the numbers. Then swap the numbers for letters. SKILL: convert a wordy question into algebra. Q: If apples cost 20p each and bananas cost 15p each, how much do <i>a</i> apples at <i>b</i> bananas cost? A: [Suppose we had 2 apples and 3 bananas. We'd work out 20×2+15×3.] So <i>a</i> apples and <i>b</i> bananas would cost 20<i>a</i>+15<i>b</i> pence. Q: Farmer Chris has <i>g</i> geese and <i>h</i> horses. How many feet do they have? A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So <i>g</i> geese and <i>h</i> horses have 2<i>g</i>+4<i>h</i> feet. Q: If a square of side <i>x</i> has an area equal to its perimeter, find the value of <i>x</i>. A: [If a square has side 3, its area is 3² and its perimeter = <i>x</i>+<i>x</i>+<i>x</i>+<i>x</i>=4<i>x</i>, so we need to solve <i>x</i>²=4<i>x</i> (which we'll come to later on). 	>	We may have to take a situation described in English and 'translate' it into algebra.
 SKILL: convert a wordy question into algebra. Q: If apples cost 20p each and bananas cost 15p each, how much do a apples at b bananas cost? A: [Suppose we had 2 apples and 3 bananas. We'd work out 20×2+15×3.] So a apples and b bananas would cost 20 a+15b pence. Q: Farmer Chris has g geese and h horses. How many feet do they have? A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So g geese and h horses have 2g+4h feet. Q: If a square of side x has an area equal to its perimeter, find the value of x. A: [If a square has side 3, its area is 3² and its perimeter = x+x+x+x=4x, so we need to solve x²=4x (which we'll come to later on). 		<u>TJP TOP TIP</u> : If in doubt, pretend that the letters are numbers and think about what you'd do with the numbers. Then swap the numbers for letters .
 Q: If apples cost 20p each and bananas cost 15p each, how much do <i>a</i> apples at <i>b</i> bananas cost? A: [Suppose we had 2 apples and 3 bananas. We'd work out 20×2+15×3.] So <i>a</i> apples and <i>b</i> bananas would cost 20<i>a</i>+15<i>b</i> pence. Q: Farmer Chris has <i>g</i> geese and <i>h</i> horses. How many feet do they have? A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So <i>g</i> geese and <i>h</i> horses have 2<i>g</i>+4<i>h</i> feet. Q: If a square of side <i>x</i> has an area equal to its perimeter, find the value of <i>x</i>. A: [If a square has side 3, its area is 3² and its perimeter is 3+3+3+3.] If a square has side <i>x</i>, its area = x² and its perimeter = x+x+x+x=4x, so we need to solve x²=4x (which we'll come to later on). 	•	SKILL: convert a wordy question into algebra.
 A: [Suppose we had 2 apples and 3 bananas. We'd work out 20×2+15×3.] So a apples and b bananas would cost 20 a+15b pence. Q: Farmer Chris has g geese and h horses. How many feet do they have? A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So g geese and h horses have 2g+4h feet. Q: If a square of side x has an area equal to its perimeter, find the value of x. A: [If a square has side 3, its area is 3² and its perimeter is 3+3+3+3.] If a square has side x, its area = x² and its perimeter = x+x+x+x=4x, so we need to solve x²=4x (which we'll come to later on). 		Q: If apples cost 20p each and bananas cost 15p each, how much do <i>a</i> apples and <i>b</i> bananas cost?
 Q: Farmer Chris has g geese and h horses. How many feet do they have? A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So g geese and h horses have 2g+4h feet. Q: If a square of side x has an area equal to its perimeter, find the value of x. A: [If a square has side 3, its area is 3² and its perimeter is 3+3+3+3.] If a square has side x, its area = x² and its perimeter = x+x+x+x=4x, so we need to solve x²=4x (which we'll come to later on). 		A: [Suppose we had 2 apples and 3 bananas. We'd work out $20 \times 2 + 15 \times 3$.] So <i>a</i> apples and <i>b</i> bananas would cost $20a+15b$ pence.
 A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have 2×5+4×6 feet.] So g geese and h horses have 2g+4h feet. Q: If a square of side x has an area equal to its perimeter, find the value of x. A: [If a square has side 3, its area is 3² and its perimeter is 3+3+3+3.] If a square has side x, its area = x² and its perimeter = x+x+x+x=4x, so we need to solve x²=4x (which we'll come to later on). 		Q: Farmer Chris has g geese and h horses. How many feet do they have?
Q: If a square of side x has an area equal to its perimeter, find the value of x. A: [If a square has side 3, its area is 3^2 and its perimeter is $3+3+3+3$.] If a square has side x, its area = x^2 and its perimeter = $x+x+x+x=4x$, so we need to solve $x^2=4x$ (which we'll come to later on).		A: [If we had 5 geese (each with 2 feet) and 6 horses (each with 4 feet), they would have $2 \times 5 + 4 \times 6$ feet.] So g geese and h horses have $2g+4h$ feet.
A: [If a square has side 3, its area is 3^2 and its perimeter is $3+3+3+3$.] If a square has side x , its area = x^2 and its perimeter = $x+x+x+x=4x$, so we need to solve $x^2=4x$ (which we'll come to later on).		Q: If a square of side x has an area equal to its perimeter, find the value of x .
		A: [If a square has side 3, its area is 3^2 and its perimeter is $3+3+3+3$.] If a square has side x , its area = x^2 and its perimeter = $x+x+x+x=4x$, so we need to solve $x^2=4x$ (which we'll come to later on).

EVALUATING EXPRESSIONS AND FORMULAE

A complicated name for a simple idea with easy marks... All you need to do is replace all the letters with numbers and work out the answer!
SKILL: Evaluate an expression or a formula. Remember to use BIDMAS and your calculator correctly (see NUMBER guide).
Q: Work out the value of x²/(y+z) if x=-6, y=-3, z=12.
A: Substitute to get (-6)²/(-3+12) = 36/9 = 4. NB a negative number squared must be positive, even if your calculator says it's not. Also, with a division bar you need to work out the whole top line and the whole bottom line first, and then divide them.
Q: Evaluate V = 4/3 π r³ where r=5.73, giving your answer correct to 2 decimal places. A: Substitute to get V = 4/3 π x 5.73³ = 788.05.

DEALING WITH BRACKETS (I): BASIC EXPANDING AND FACTORISING We need to be good at taking things out of brackets and putting them back into brackets. SKILL: Multiply out (expand) a single term by a bracket. Multiply each term inside the bracket by whatever is in front of the bracket. Q: Expand -3(4x-5). A: $-3(4x-5) = -3 \times 4x + -3 \times (-5) = -12x + 15$. (NB: last term is +15, not -15.) Q: Multiply out $5a^2b(2a-3b+4ab)$. A: $5a^{2}b(2a-3b+4ab) = 5a^{2}b\times 2a+5a^{2}b\times (-3b)+5a^{2}b\times 4ab$ $= 10a^{3}b - 15a^{2}b^{2} + 20a^{3}b^{2}$ SKILL: Factorise into a single bracket. • Find the HCF of all the terms [the biggest number and letter(s) that goes into them]. • Write down this HCF in front of the brackets. • Divide all the original terms by this HCF and put them in the brackets. TJP TOP TIP: You can always check your answer by expanding the brackets again... If you've done it right, the terms in the bracket should have nothing in common. Q: Factorise 18a - 27. A: The HCF is 9 so we get 9(2a-3)[Check: $9(2a-3) = 9 \times 2a + 9 \times (-3) = 18a - 27$. Correct!] Q: Factorise $8 x y^2 + 20 x^2$. A: The HCF is 4x so we get $4x(2y^2+5x)$. **TJP TOP TIP**: With more complicated questions, you can set out your working as for HCF and LCM (see NUMBER guide). You get the HCF by multiplying what's in the left-hand column, and the brackets contain the terms in the bottom row. See below: Q: Factorise $70a^3b^5c^2-28ab^3c^3+42a^2b^4c^4$ $70a^{3}b^{5}c^{2}-28ab^{3}c^{3}+42a^{2}b^{4}c^{4}$ A: 2 $35a^{3}b^{5}c^{2}-14ab^{3}c^{3}+21a^{2}b^{4}c^{4}$ 7 $5a^{3}b^{5}c^{2} - 2ab^{3}c^{3} + 3a^{2}b^{4}c^{4}$ a is the biggest factor of a^3 , a, a^2 a $5a^{2}b^{5}c^{2} - 2b^{3}c^{3} + 3ab^{4}c^{4}$ $5a^{2}b^{2}c^{2} - 2c^{3} + 3abc^{4}$ b^3 is the biggest factor of b^5 , b^3 , b^4 b^3 c^2 c^2 is the biggest factor of c^2 , c^3 , c^4 $5a^2b^2$ -2c $+3abc^2$ HCF = $2 \times 7ab^{3}c^{2} = 14ab^{3}c^{2}$ (from the left-hand column) Answer: $14ab^{3}c^{2}(5a^{2}b^{2}-2c+3abc^{2})$ (using the bottom row) [Check: the terms in brackets have no common factors.]

COLLECTING LIKE TERMS

SIMPLIFYING INDICES

\triangleright	Another way of tidying up algebra in question	ns is by simplifying indi	ces.
	We use the three laws of indices:		
	Multiply by adding the indices:	$x^4 \times x^5 = x^9$	
	Divide by subtracting the indices:	$y^{12} \div y^2 = y^{10}$	LEARN!
	Do brackets by multiplying the indices:	$(z^3)^5 = z^{15}$	
	Any numbers should be worked out alongsid	e the indices.	
	SKILL: Simplify algebraic indices.		
	Q: Simplify $\frac{3x^3y^2 \times 4xy^4}{6x^2y^5}$.		
	A: $\frac{3x^3y^2 \times 4xy^4}{6x^2y^5} = \frac{3 \times 4}{6} \times x^{3+1-2}y^{2+4-5} = 2$	$2x^2y$	

SOLVING LINEAR EQUATIONS

10x+5 = 9x-12

 $\begin{array}{rcrr} (-9 x) & (-9 x) \\ x+5 & = -12 \\ (-5) & (-5) \\ x & = -17 \end{array}$

 \triangleright A linear equation is one with only numbers and x terms (no higher powers or roots). 'Solve' means find the value(s) of x that makes the equation true. Remember to do exactly the same thing to each side of the equation to keep them equal. **IGCSE INSIDER INFO:** If you show no working but get the right answer, you get no marks! So even if you can do it all in your head, write down every step. **TJP TOP TIP**: To solve an equation, first of all group the x terms together if required. Then 'undo' the equation, one step at a time, to get x = The last thing to happen (by BIDMAS) is the first thing to undo. SKILL: Solve a linear equation. Q: Solve 3x + 7 = 19. A: 3x+7 = 19Last thing to happen is +7. (-7) (-7)First, undo +7 with -7. 3x = 12 $(\div 3)$ $(\div 3)$ Then undo $\times 3$ with $\div 3$ x = 4Q: Solve 3x + 7 = x - 9. A: 3x+7 = x-9First, group the x terms together. (-x) (-x)2 x + 7 = -9 Subtract the **smaller** of 3x and x, to keep things positive. From here on it's like the previous example. (-7) (-7)2x = -16 $(\div 2)$ $(\div 2)$ x = -8If the equation contains fractions, get a common denominator before proceeding. Q: Solve $\frac{2x+1}{3} = \frac{3x-4}{5}$. A: $\frac{2x+1}{3} = \frac{3x-4}{5}$ First, get a common denominator. $\frac{10x+5}{15} = \frac{9x-12}{15}$ Now the numerators must be equal.

Group the x terms together like before.

SOLVING LINEAR INEQUALITIES

DEALING WITH BRACKETS (III): EXPANDING QUADRATICS

 $5 \times (-2) = -10$

L:

/						
\triangleright	To multiply a bracket by a bracket, use FOIL (or Smiley Face).					
	FOIL	. stand	s for First, Outer, Inner, I	Last.		
	This	means	5.			
		Multi	iply the F irst terms in ea	ch bracket,	$(x+2)(x+3) \rightarrow x^2$	
		Multi	iply the O uter two terms	in the brackets,	$(x+2)(x+3) \rightarrow 3x$	
		Multi	iply the Inner two terms i	n the brackets,	$(x+2)(x+3) \rightarrow 2x$	
		Multi	iply the Last terms in eac	ch bracket.	$(x+2)(x+3) \rightarrow 6$	
	Then In oth	Then add these bits together to get the final answer: x^2+5x+6 . In other words, use MAAD (Multiply Across, Add Down) on your FOIL .				
	lf you	ı prefe	r, Smiley Face does the	same thing like this:		
				[The curves tell yo [The eyes are just	ou what bits to multiply together.] for fun]	
	SKIL	L: Exp	oand brackets using F(DIL.		
	Q: Ex	xpand	(x+3)(x-5).			
	A:	F: O: I: L:	$x \times x = x^{2}$ $x \times (-5) = -5x$ $3 \times x = 3x$ $3 \times (-5) = -15$	Answer: $x^2 + 3x -$	$5x-15 = x^2-2x-15$	
	Q: Ex	xpand	(4x+5)(3x-2).			
	A:	F: O: I:	$4x \times 3x = 12x^{2}$ $4x \times (-2) = -8x$ $5 \times 3x = 15x$			

Answer: $12x^2 - 8x + 15x - 10 = 12x^2 + 7x - 10$

Q: Work out $(x-4)^2$. A: Warning! This is FOIL in disguise! First, rewrite it as $(x-4)^2 = (x-4)(x-4)$. F: $x \times x = x^2$ O: $x \times (-4) = -4x$ $-4 \times x = -4x$ l: $(-4) \times (-4) = 16$ Answer: $x^2 - 4x - 4x + 16 = x^2 - 8x + 16$ L:

```
DEALING WITH BRACKETS (II): FACTORISING QUADRATICS
      To factorise a guadratic expression into brackets, use the 'Anti-FOIL' methods below:
\triangleright
      SKILL: Factorise a simple quadratic into brackets (one lot of x^2).
      Q: Factorise x^2 + 7x + 12.
      A: Find two numbers that add to make 7 and multiply to make 12.
         [Start with the 'multiply' part to cut down your options. Could be 1 & 12, 2 & 6 or 3 & 4.]
         The required numbers are 3 and 4.
         Answer: (x+3)(x+4)
      Q: Factorise x^2 + 2x - 8.
      A: Find two numbers that add to make 2 and multiply to make -8.
         [Could be 1 & 8 or 2 & 4, then decide about minus signs.]
         The required numbers are -2 and 4.
         [We need one +ve and one -ve number to multiply to make -8. Since they add to +2,
          the +ve number must 'beat' the -ve one, so it's -2 & 4, not -4 & 2.]
         Answer: (x-2)(x+4)
      IGCSE INSIDER INFO: The next type of question often comes up – don't be caught out!
      Q: Factorise x^2 - 9x.
      A: Find two numbers that add to -9 and multiply to 0 (you can write it as x^2 - 9x + 0).
         These numbers are 0 and -9.
         Answer: (x-0)(x-9) = x(x-9).
         Or, note that the terms have an x in common, so the answer is immediately x(x-9).
      Q: Factorise x^2 - 9.
                                [Note: This is called Difference Between Two Squares]
      A: Find two numbers that add to 0 (there are no lots of x) and multiply to –9.
         These numbers are -3 and 3.
         Answer: (x-3)(x+3)
      If the coefficient of x^2 is greater than 1, we use a slightly 'tweaked' method (Fairbrother).
\triangleright
      SKILL: Factorise a harder quadratic into brackets (more than one lot of x^2).
      Q: Factorise 12x^2 - x - 6.
      A: Find two numbers that add up to -1 and multiply to make 12 \times (-6) = -72.
         [Could be 1 & 72, 2 & 36, 3 & 24, 4 & 18, 6 & 12 or 8 & 9.]
         The required numbers are -9 and 8.
         Start by writing (12x-9)(12x+8) and then divide by common factors 3 and 4 to give
         Answer: (4x-3)(3x+2)
```

SOLVING QUADRATIC EQUATIONS

ALGEBRAIC FRACTIONS

 \triangleright Algebraic fractions are simply fractions which contain letters instead of/as well as numbers. We use the same standard rules as before for adding, multiplying, etc. SKILL: Simplify algebraic fractions. **TJP TOP TIP**: Factorise everything in sight! Then cancel down any matching bits. Q: Simplify $\frac{3x+12}{2x+8}$. A: Factorise and then cancel down: $\frac{3x+12}{2x+8} = \frac{3(x+4)}{2(x+4)} = \frac{3}{2}$. Q: Simplify $\frac{x^2 - x - 12}{x^2 - 2x - 8}$. A: Factorise and then cancel down: $\frac{x^2 - x - 12}{x^2 - 2x - 8} = \frac{(x - 4)(x + 3)}{(x - 4)(x + 2)} = \frac{x + 3}{x + 2}$. SKILL: Add or subtract algebraic fractions. Just get a common denominator first and then add/subtract the numerators. Q: Work out $\frac{x-3}{2} - \frac{x+1}{5}$. A: Common denominator is 10: $\frac{x-3}{2} - \frac{x+1}{5} = \frac{5x-15}{10} - \frac{2x+2}{10} = \frac{3x-17}{10}$. Q: Work out $\frac{1}{x} + \frac{1}{x+1}$. A: $\frac{1}{x} + \frac{1}{x+1} = \frac{x+1}{x(x+1)} + \frac{x}{x(x+1)} = \frac{2x+1}{x(x+1)}$. SKILL: Solve equations involving algebraic fractions. Get a common denominator, then 'zap' it (multiply through by it). Q: Solve $\frac{1}{3} + \frac{1}{x+1} = \frac{x}{3}$. A: $\frac{x+1}{3(x+1)} + \frac{3}{3(x+1)} = \frac{x(x+1)}{3(x+1)}$ [now multiply through by 3(x+1)] $(x+1) + 3 = x(x+1) = x^{2}+x$ $4 = x^{2}$ x = +2

SOLVING LINEAR SIMULTANEOUS EQUATIONS

 \triangleright Linear simultaneous equations are two (or more) linear equations that must be true at the same time. 'Linear' means there are no pesky x^2 terms (or roots, etc.). TJP TOP TIP: To solve linear simultaneous equations: • Match up the number of x or y first (multiply through by a number if required). • SSS? This means 'Same Sign? Subtract!'. If the matching terms are both +ve (or both -ve) then subtract one equation from the other. Otherwise add the equations. • Solve this new equation, then go back and find the other letter. SKILL: Solve linear simultaneous equations. 2x+3y = 13Q: Solve $\frac{2x+2y}{4x+11y} = 41$ A: Match up the number of x by doubling the first equation. 4x + 6y = 26|4x| + 11y = 41SSS? Yes! The matching *x* terms are both positive. So subtract the top equation from the bottom one (to keep things positive): 5 y = 15y = 3Now go back and find x; substitute for y in the easiest original equation. $2x+3\times 3 = 2x+9 = 13$ 2x = 4x = 2So x = 2 and y = 3. [You can check these values in the original equations.] Q: Solve 3x - 4y = -125x + 6y = -1. A: Match up the number of y by tripling the first equation and doubling the second one. 9x - 12y = -3610 x + 12 v = -2SSS? No! The matching y terms have opposite signs. So add the two equations: 19x = -38x = -2Now go back and find y; substitute for x in the easiest original equation. $5 \times (-2) + 6 v = -10 + 6 v = -1$ 6y = 9v = 1.5So x = -2 and y = 1.5.

TJP TOP TIP: If you get **horrible answers** (not a whole number or a simple fraction), you are **probably wrong**... And you can always check your answers anyway.

SOLVING QUADRATIC SIMULTANEOUS EQUATIONS

Quadratic simultaneous equations are two (or more) equations that must be true \triangleright at the same time. 'Quadratic' means there are x^2 or y^2 terms in there. **TJP TOP TIP:** To solve guadratic simultaneous equations: • Match up the number of x or y first, if possible. [If not, read on...] • SSS? This means 'Same Sign? Subtract!'. If the matching terms are both +ve (or both -ve) then subtract one equation from the other. Otherwise add the equations. • Solve this new quadratic equation, then go back and find the other letter. SKILL: Solve simple quadratic simultaneous equations. Q: Solve $\begin{array}{c} y = 2x+3 \\ y = x^2 \end{array}$ A: The y terms already match! This often happens in these questions. SSS? Yes! The matching *y* terms are both positive. So subtract the top equation from the bottom one (to keep the x^2 term positive): $v - v = x^2 - (2x + 3)$ $0 = x^2 - 2x - 3$. Now factorise this to solve: 0 = (x-3)(x+1)So x = 3 or x = -1. Now go back and find y; substitute for x in the easiest original equation, $y = x^2$. If x = 3, then $y = 3^2 = 9$. If x = -1, then $y = (-1)^2 = 1$. SKILL: Solve harder quadratic simultaneous equations. If we can't match up x or y, we have to **substitute** instead... Q: Solve 2x + y = 1 $x^2 + y^2 = 2$. A: Rearrange the first equation to get y = 1 - 2x. Now substitute this into the second equation: $x^{2} + (1 - 2x)^{2} = 2$ $x^{2}+1-4x+4x^{2} = 2$ $5x^2 - 4x + 1 = 2$ Put the quadratic equal to zero. $5x^2 - 4x - 1 = 0$ Now for a spot of Fairbrother... Find two numbers which add to -4 and multiply to $5 \times (-1) = -5$. These are -5 and 1, so we get: (5x-5)(5x+1) = 0 or (x-1)(5x+1) = 0 (cancelling down) If x = 1, then $y = 1 - 2 \times 1 = -1$. If $x = -\frac{1}{5}$, then $y = 1 - 2 \times -\frac{1}{5} = 1\frac{2}{5}$.

REARRANGING FORMULAE

FUNCTIONS

PROPORTION

\triangleright	Two quantities are proportional if they change so that one of them is always a fixed multiple of the other. This means that if you double one quantity, the other one is doubled, too.		
	There are several words and symbols meaning exactly the same thing:		
	A varies as B; A is (directly) proportional to B; $A \propto B$; $A = kB$		
	There are five more possibilities listed in the syllabus, namely:		
	A is proportional to (or varies as) the square of B $A \propto B^2$		
	A is proportional to (or varies as) the cube of B $A \propto B^3$		
	A is inversely proportional to (or varies inversely as) B $A \propto 1/B$ A is inversely proportional to (or varies inversely as) the square of B $A \propto 1/B^2$		
	A is proportional to (or varies as) the square root of B $A \propto \sqrt{B}$		
	SKILL: Solve proportion problems.		
	Good news: proportion questions are remarkably predictable		
	 Write down the proportion relation and swap the '∞' for '= k×' Use the given data to get the value of k and write down the master formula. Use this formula forwards. Use this formula in reverse. 		
	Q: If p varies as the square of q, and $p = 20$ when $q = 2$, find		
	(a) p in terms of q (b) p when $q = 10$ (c) q when $p = 605$		
	A: (a) Here, $p \propto q^2$ is rewritten as $p = kq^2$.		
	Then substitute $p = 20$, $q = 2$ to get $20 = k \times 2^2$, so $k = 5$.		
	Master formula is: $p = 5q^2$.		
	(b) When $q = 10$, $p = 5 \times 10^2 = 5 \times 100 = 500$.		
	(c) When $p = 605$, $605 = 5q^2$ so $121 = q^2$. Therefore $q = \pm 11$.		
	Q: If y is inversely proportional to x and $y = 4$ when $x = 3$, find		
	(a) y in terms of x (b) y when $x = 2$ (c) x when $y = 3$		
	A: (a) We rewrite $y \propto \frac{1}{x}$ as $y = k \times \frac{1}{x}$.		
	Then substitute $x = 3$, $y = 4$ to get $4 = k \times \frac{1}{3}$, so $k = 12$.		
	Master formula is $y = 12 \times \frac{1}{x}$ (or $y = \frac{12}{x}$ if you prefer).		
	(b) When $x = 2$, $y = 12 \times \frac{1}{2} = 6$.		
	(c) When $y = 3$, $3 = 12 \times \frac{1}{x}$ so $\frac{3}{12} = \frac{1}{4} = \frac{1}{x}$. Therefore $x = 4$.		

SEQUENCES

DIFFERENTIATION

CONTENTS

Page	Торіс
2	Algebra Words
3	Algebra Basics
4	Tips for Writing Algebra
4	Expressions, Formula, Equations and Inequalities
5	Wordy Questions
5	Evaluating Expressions and Formulae
6	Brackets: Basic Expanding and Factorising
7	Collecting Like Terms
7	Simplifying Indices
8	Solving Linear Equations
9	Solving Linear Inequalities
10	Brackets: Expanding Quadratics
11	Brackets: Factorising Quadratics
12	Solving Quadratic Equations
13	Solving Quadratic Inequalities
14	Algebraic Fractions
15	Solving Linear Simultaneous Equations
16	Solving Quadratic Simultaneous Equations
17	Rearranging Formulae
18-19	Functions
20	Proportion
21	Sequences
22-23	Differentiation