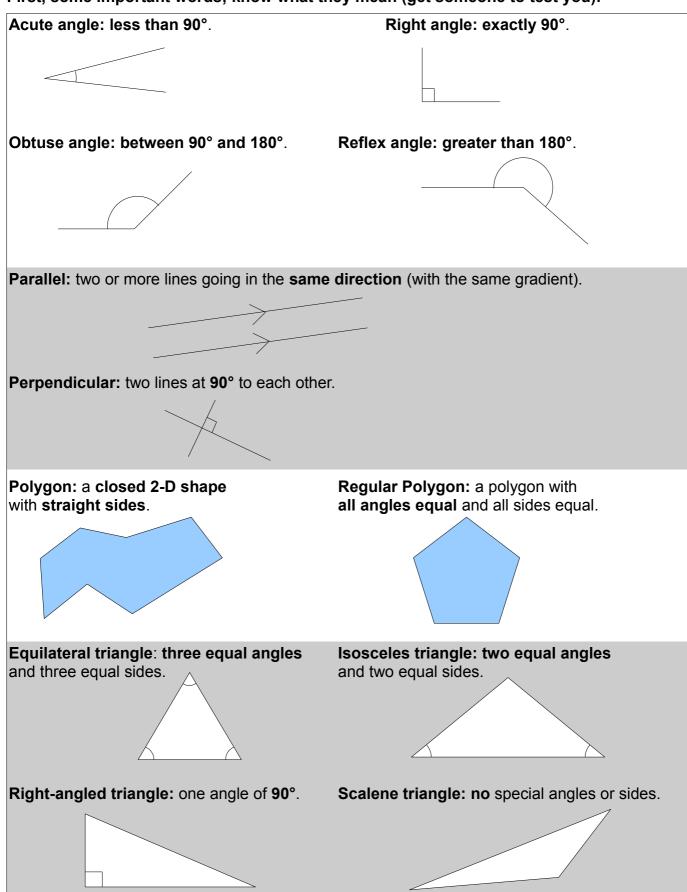
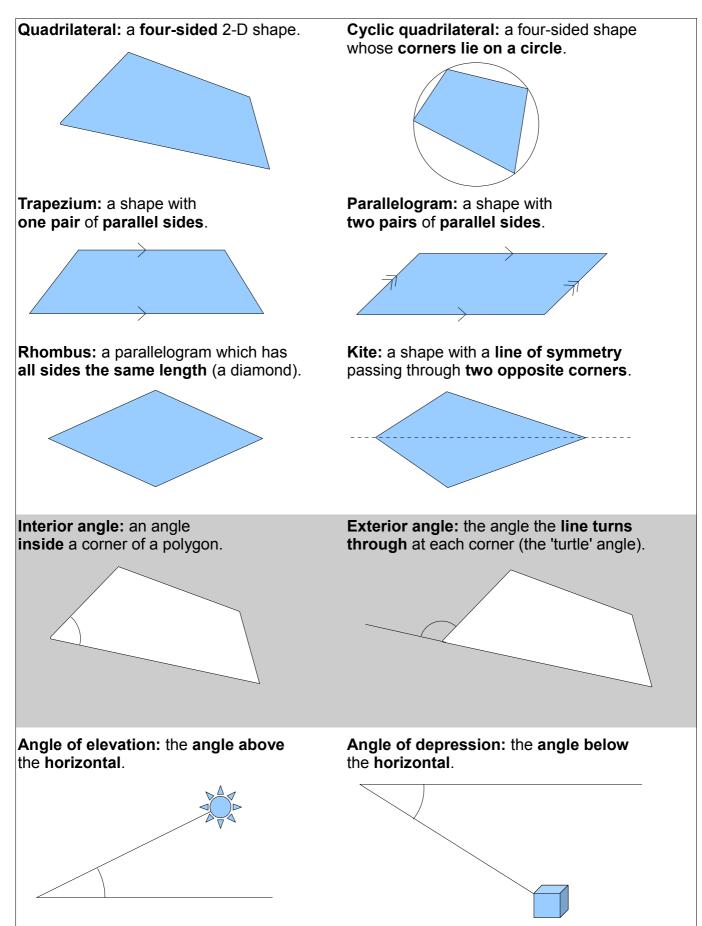


© Dr T J Price, 2011

First, some important words; know what they mean (get someone to test you):



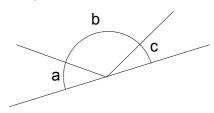


ANGLES

Angles are measured in degrees (°) so that there are 360 degrees in a full circle. Why 360? Well, it's probably to do with the number of days in a year, combined with the fact that lots of numbers go into 360 exactly (it has many factors).

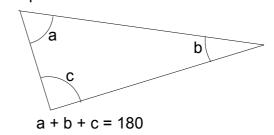
Here are some more important angle facts:

Angles on a straight line add up to 180°.

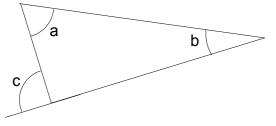


a + b + c = 180

Angles in a triangle (interior angles) add up to 180°.

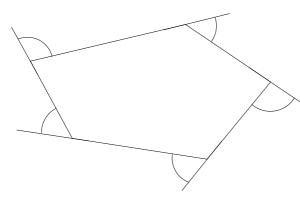


Exterior angle in a triangle is the sum of the other two interior angles.



a + b = c

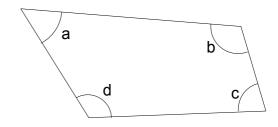
Exterior angles in a polygon add up to 360°, always.



If you walk around the shape once, you turn through a total angle of 360°.

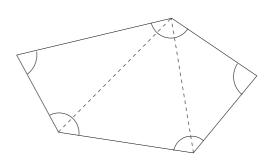
Exterior angle of a regular polygon with n sides is 360÷n°.

Angles in a quadrilateral add up to 360°.



a + b + c + d = 360

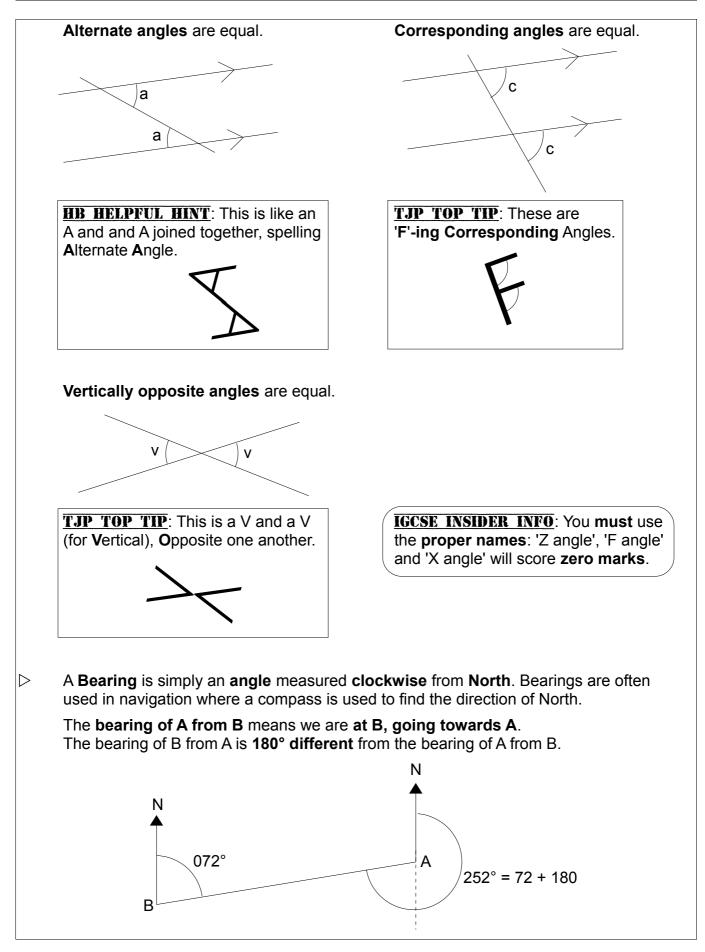
Interior angles in an n-sided polygon add up to $180(n-2)^{\circ}$.



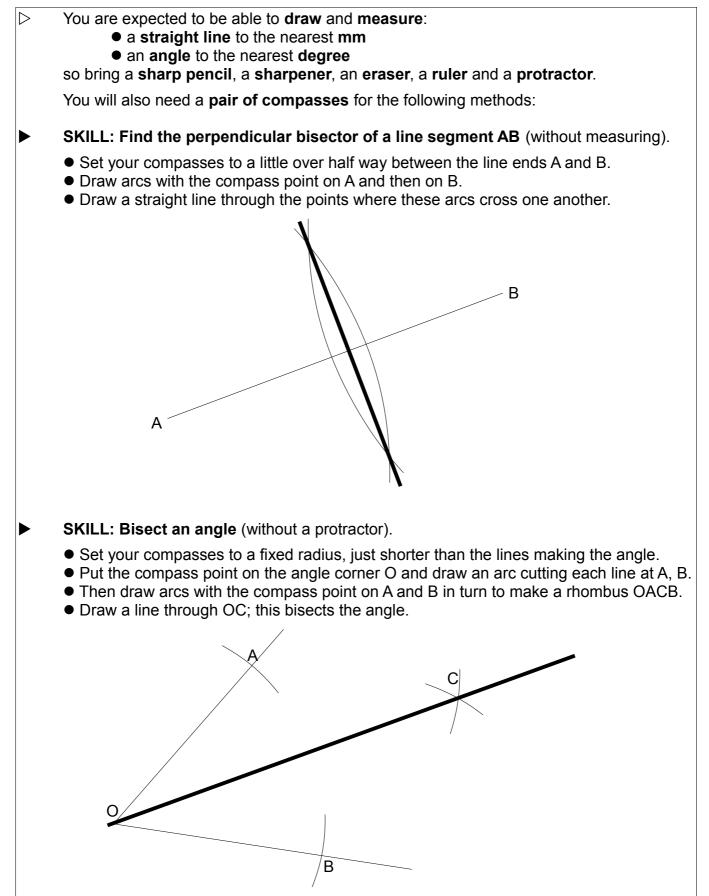
You can divide an n-sided polygon into n - 2 triangles, each 'worth' 180°.

Interior angle of a regular polygon with n sides is $180(n - 2) \div n^{\circ}$.

Page 4



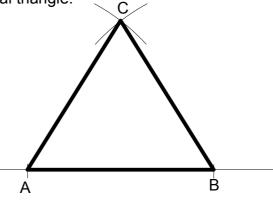
CONSTRUCTION



SKILL: Construct triangles and other 2-D shapes (compasses and straightedge).

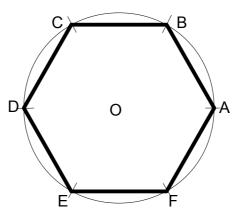
Equilateral Triangle:

- Given a baseline AB, set your compasses to this distance.
- Draw two arcs centred on points A and B so that the arcs cross at point C.
- ABC then forms an equilateral triangle.



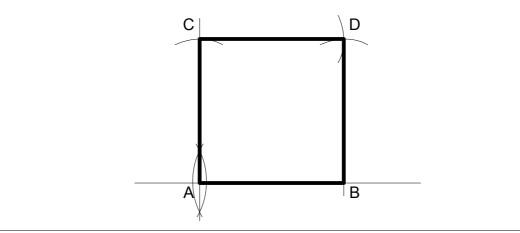
Regular Hexagon:

- Set your compasses to the required side length.
- Draw a circle centre O.
- Use the compasses to mark off the side length all around the circumference.
- Join the marks to construct the hexagon ABCDEF.

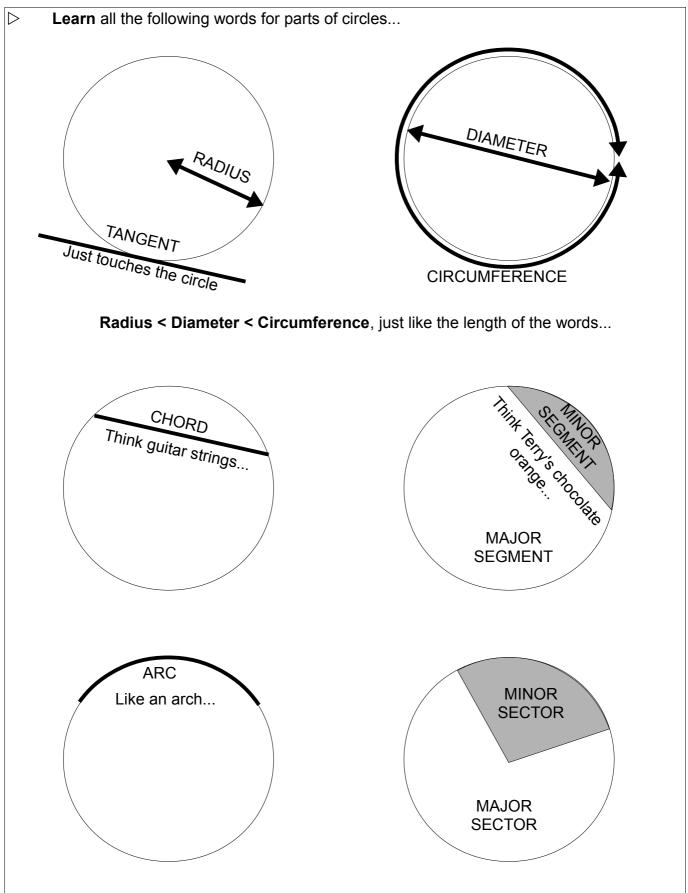


Square:

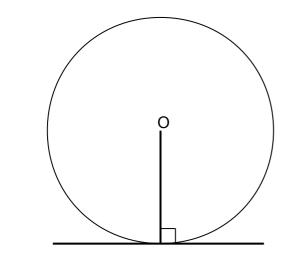
- Given a baseline AB, construct a perpendicular line at A (see previous page).
- Use your compasses to mark off the distance AB up this line to give C.
- Using this same radius, now draw arcs centred on C and B, crossing at D.



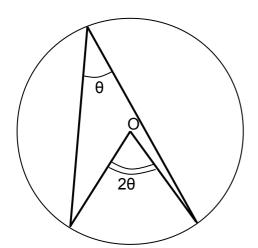
PARTS OF CIRCLES



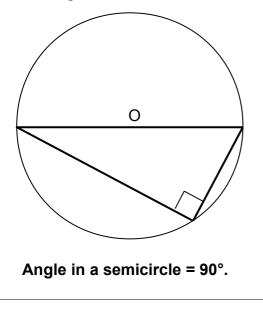
CIRCLE THEOREMS

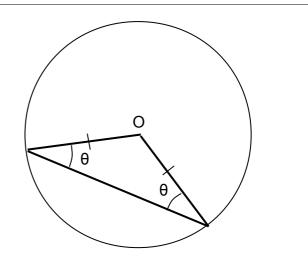


Radius meets tangent at 90°.

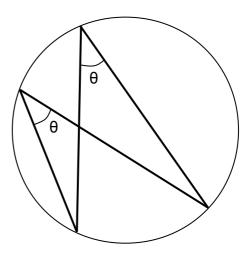


Angle at the centre is twice the angle at the circumference.

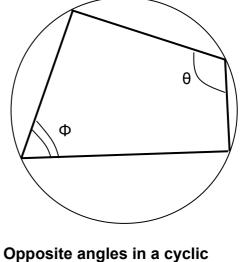




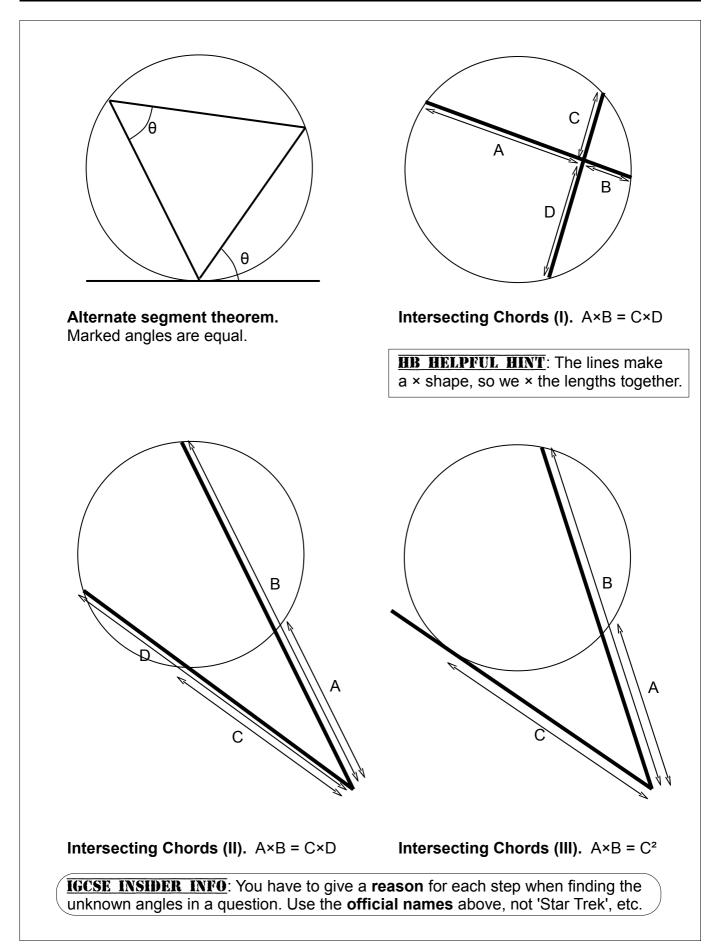
Isosceles triangle (with two corners on the circumference and one at the centre).



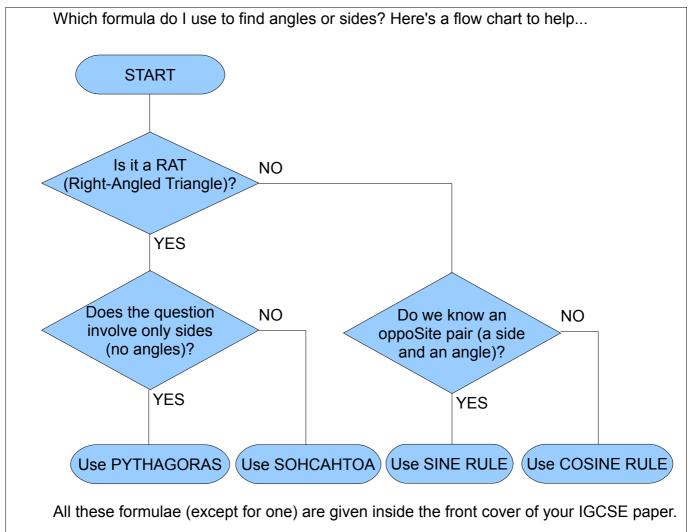
Angles in the same segment are equal.



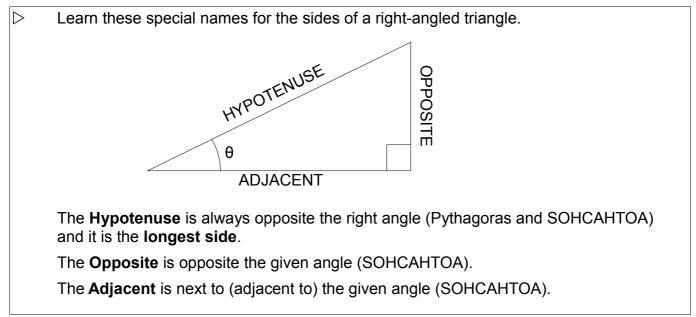
quadrilateral add up to 180° . $\theta + \phi = 180^{\circ}$.



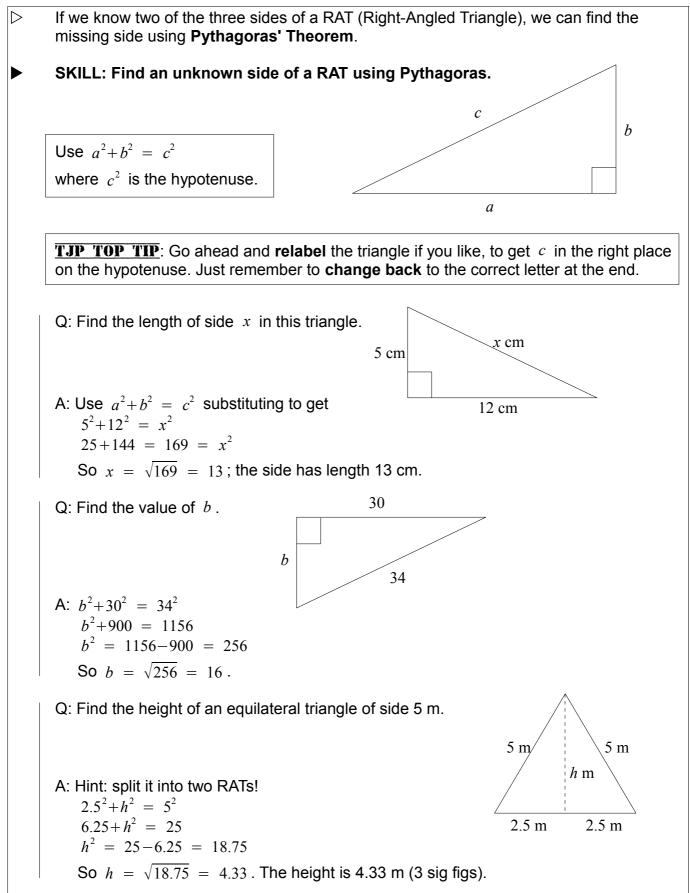
FORMULAE FOR TRIANGLES



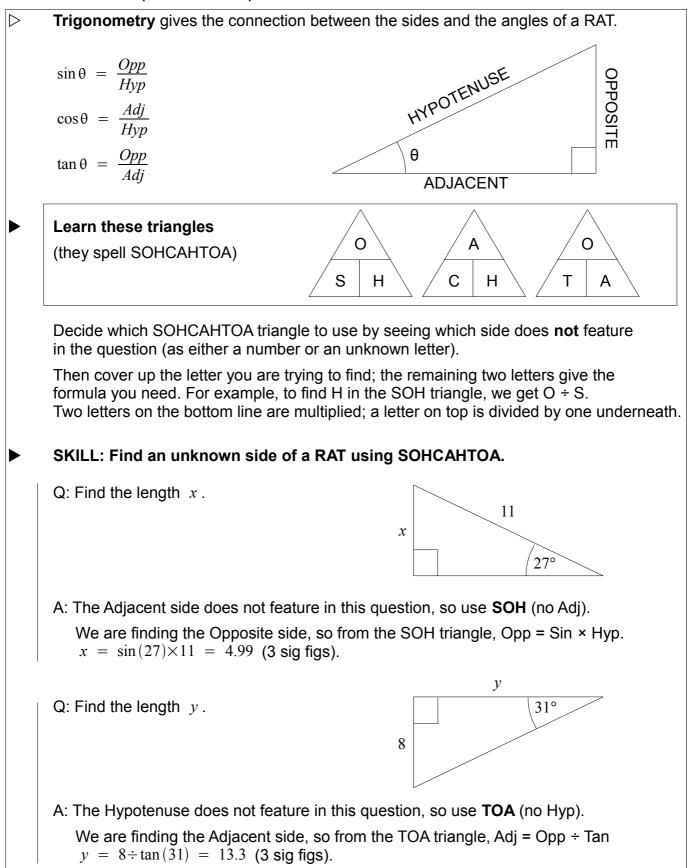
ANATOMY OF A RAT

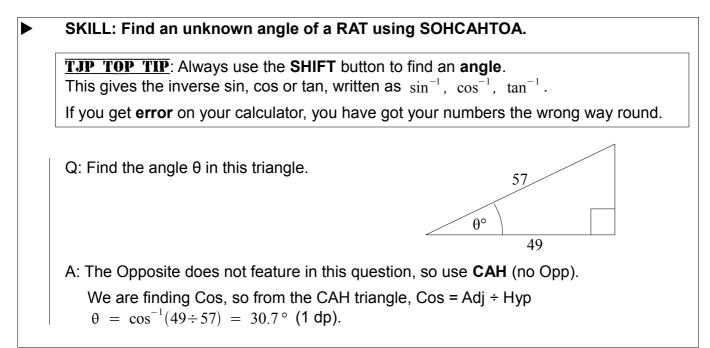


PYTHAGORAS

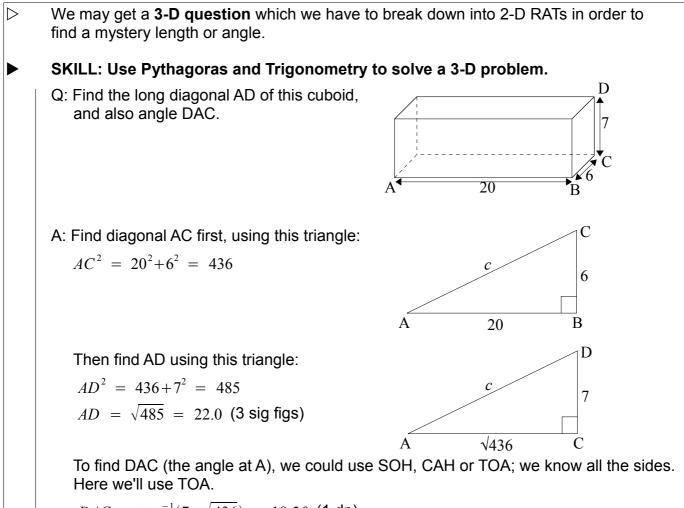


TRIGONOMETRY (SOHCAHTOA)



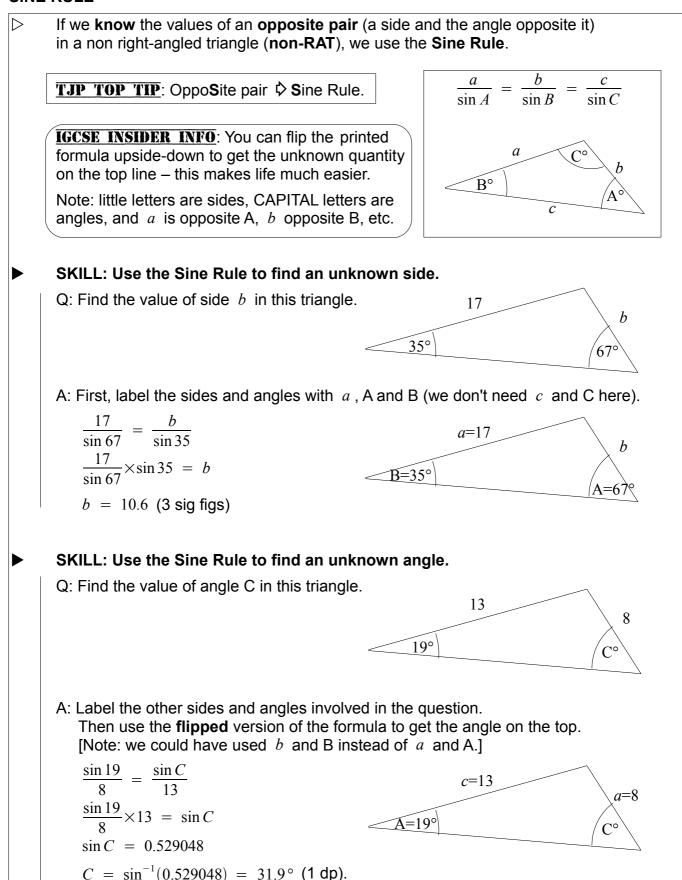


THREE-DIMENSIONAL PROBLEMS

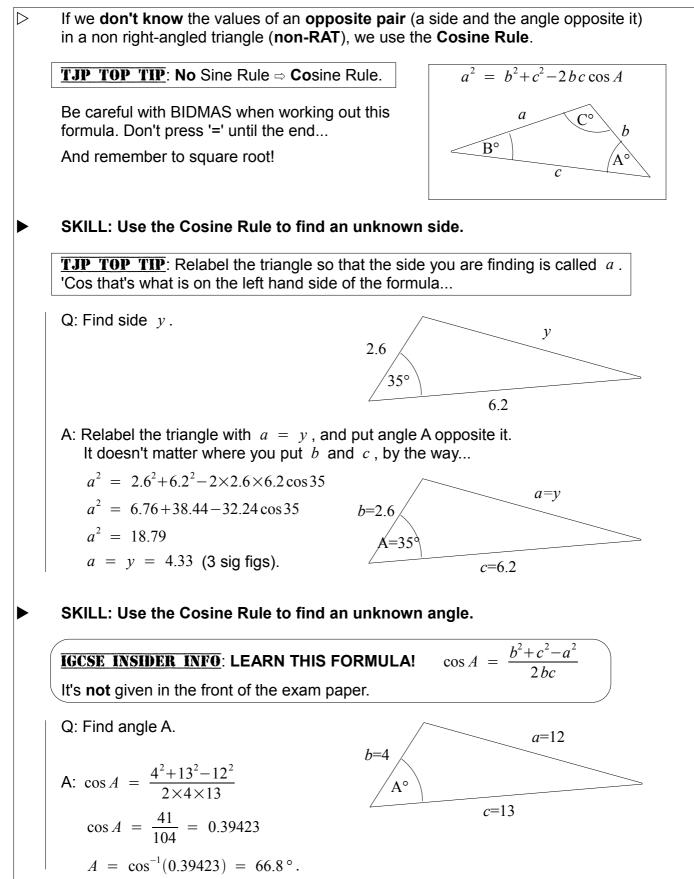


 $DAC = \tan^{-1}(7 \div \sqrt{436}) = 18.5^{\circ}$ (1 dp).

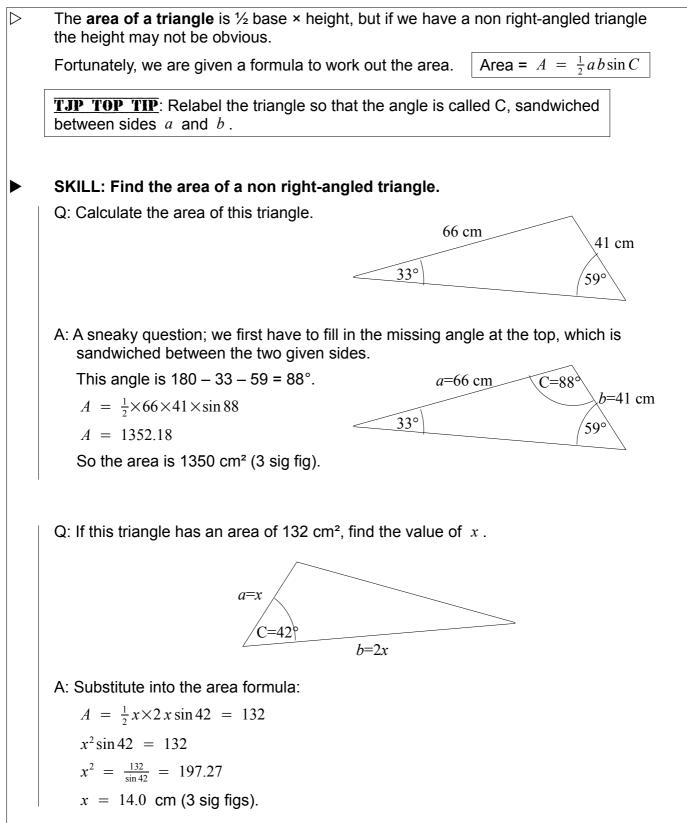
SINE RULE



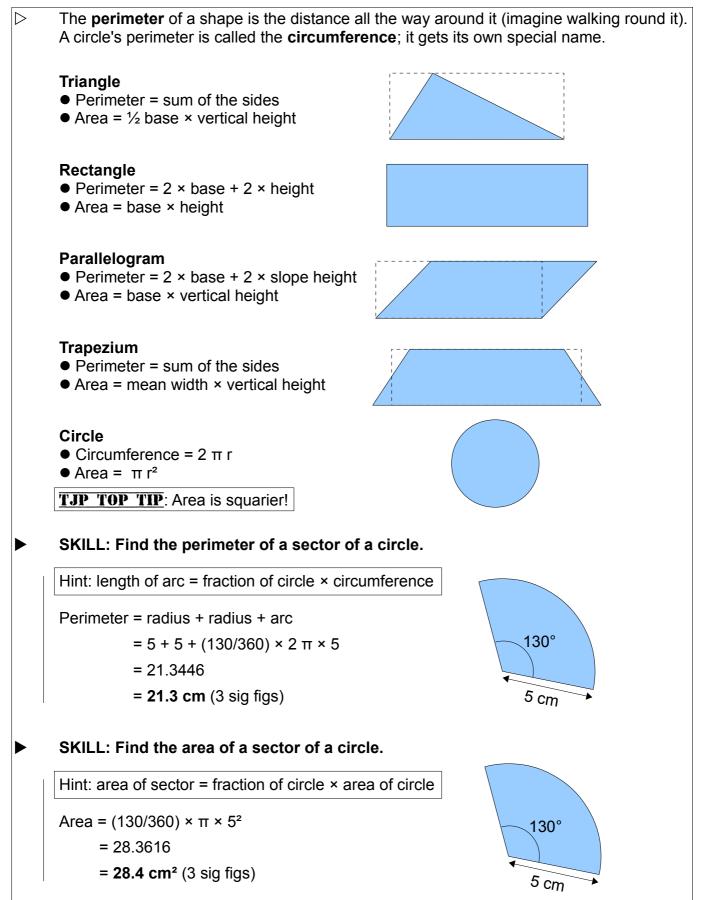
COSINE RULE



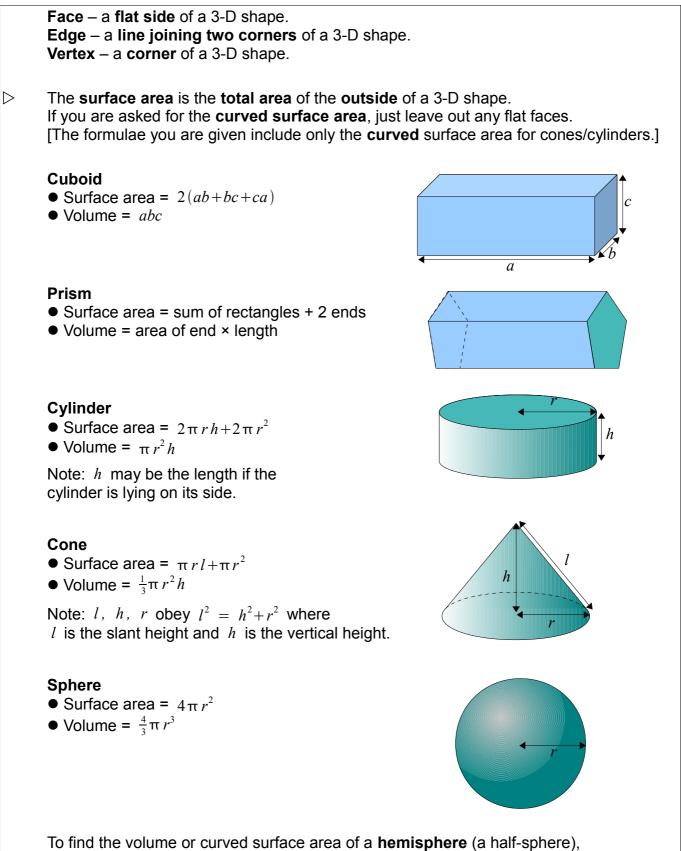
AREA OF A TRIANGLE



PERIMETER AND AREA

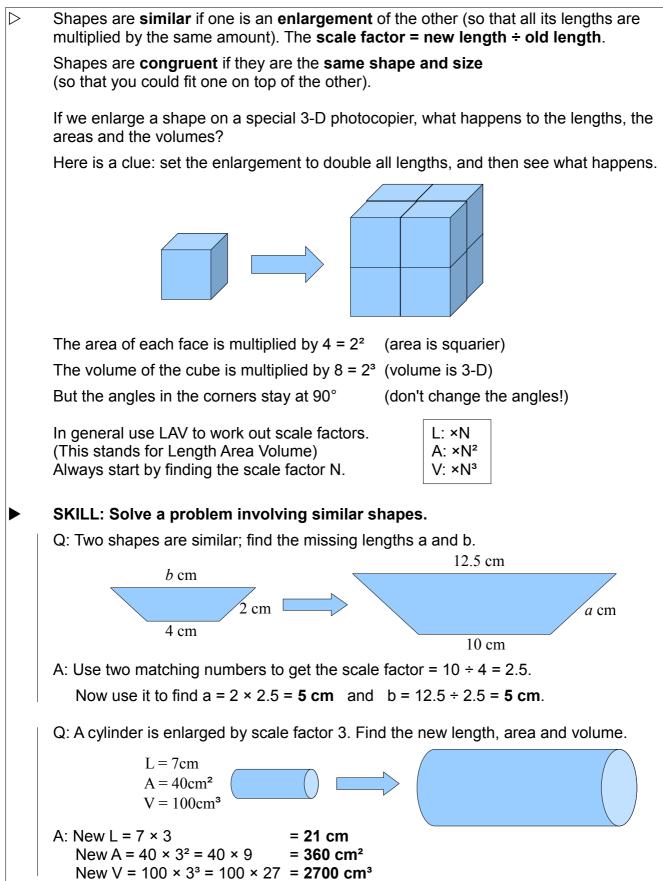


SURFACE AREA AND VOLUME

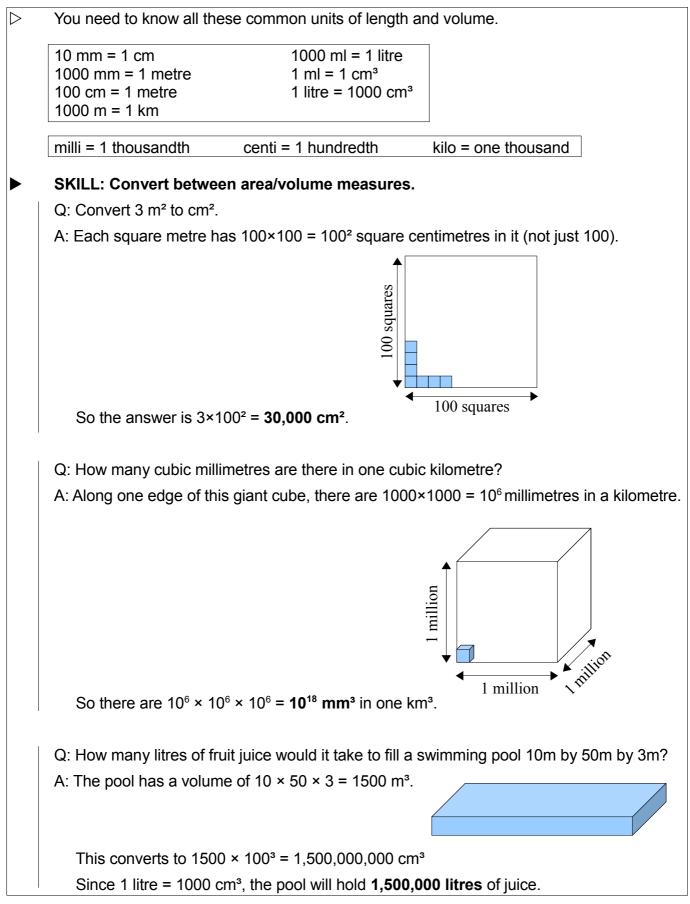


simply work it out for a whole sphere and then halve your answer.

SIMILARITY AND ENLARGEMENT



METRIC UNITS



VECTORS

A scalar has size (an ordinary number), e.g. time, mass, speed, distance.
A vector has size and direction, e.g. force, weight, velocity, displacement.
The size (or length) of a vector is called its magnitude or modulus.

A vector quantity is shown by a bold letter **a** (in print), or underlined $\underline{\alpha}$ if handwritten. The same letter 'a' written normally means the **modulus** or length of the vector **a**.

If we have a vector going from A to B, we can write this as \overline{AB} .

We can show the direction of a vector in several different ways:

- by drawing a diagram:
- by giving an **angle or bearing**: 10km on a bearing of 327°.
- by giving the x and y amounts in brackets (a **column vector**): $c = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$.

If you **multiply a vector by a scalar** (ordinary number) you just make the vector longer or shorter. For example, doubling a vector makes it twice as long (in the same direction).

The resultant is the result of adding or subtracting two or more vectors.

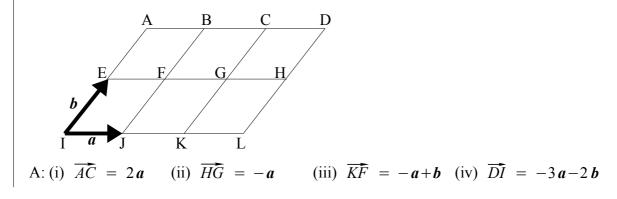
Use Pythagoras to find the modulus of a column vector.

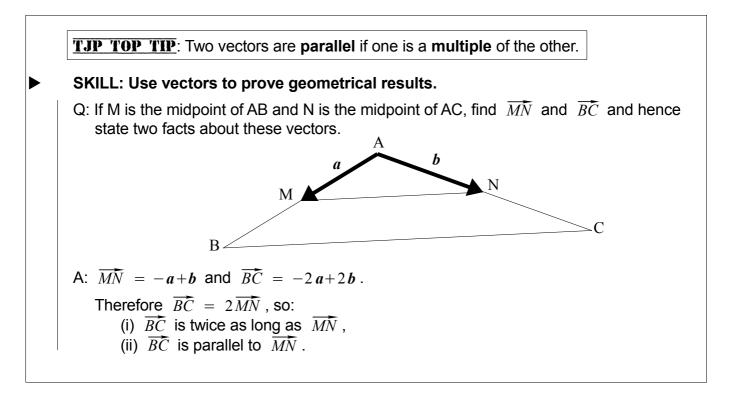
SKILL: Solve problems involving column vectors.

Q: If $a = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $b = \begin{pmatrix} -7 \\ 7 \end{pmatrix}$, find (i) 3a (ii) a+b (iii) the modulus of a. A: (i) $3a = 3\begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \end{pmatrix}$ (ii) $a+b = \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \begin{pmatrix} -7 \\ 7 \end{pmatrix} = \begin{pmatrix} -5 \\ 12 \end{pmatrix}$ (iii) modulus of $a = \sqrt{2^2+5^2} = \sqrt{29} = 5.39$ (3 sig figs)

SKILL: Solve geometrical vector questions.

Q: Use the grid below to write vector expressions for (i) \overrightarrow{AC} (ii) \overrightarrow{HG} (iii) \overrightarrow{KF} (iv) \overrightarrow{DI} Hint: you can only move in the *a* and *b* directions, and backwards is negative.





CONTENTS

Page	Торіс
2-3	Angle and Polygon Words
4-5	Angle and Polygon Facts
6-7	Construction
8	Parts of Circles
9-10	Circle Theorems
11	Flowchart for Triangle Formulae
12	Pythagoras
13-14	Trigonometry (SOHCAHTOA)
14	3-D Problems
15	Sine Rule
16	Cosine Rule
17	Area of a Triangle
18	Perimeter and Area
19	Surface Area and Volume
20	Similarity and Enlargement
21	Metric Units
22-23	Vectors