| Please write clearly in | ı block capitals. | |-------------------------|--------------------------------| | Centre number | Candidate number | | Surname | | | Forename(s) | | | Candidate signature | I declare this is my own work. | # AS CHEMISTRY Paper 1 Inorganic and Physical Chemistry Monday 18 May 2020 Morning Time allowed: 1 hour 30 minutes #### **Materials** For this paper you must have: - the Periodic Table/Data Sheet, provided as an insert (enclosed) - a ruler with millimetre measurements - a scientific calculator, which you are expected to use where appropriate. ### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages. - If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). - All working must be shown. - Do all rough work in this book. Cross through any work you do not want to be marked. | For Exam | iner's Use | |-----------|------------| | Question | Mark | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | Section B | | | TOTAL | | #### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 80. #### Advice You are advised to spend about 65 minutes on **Section A** and 25 minutes on **Section B**. | _ | | | | | | • | |----------|---|--------|---|--------------|---|---------------| | <u>~</u> | Δ | \sim | • | \mathbf{a} | n | Α | | u | c | • | ы | v | | $\overline{}$ | | | Answer all questions in this section. | |-------|--| | 0 1 | This question is about atomic structure. | | 0 1.1 | There is a general trend for an increase in ionisation energy across Period 3. Give one example of an element that deviates from this trend. | | | Explain why this deviation occurs. [3 marks] | | | Element | | | Explanation | | | | | | | | | | | 0 1.2 | Give an equation, including state symbols, to represent the process that occurs when the third ionisation energy of sodium is measured. [1 mark] | Do not write outside the Turn over for the next question 7 This question is about a titration. A student dissolves an unknown mass of sodium hydroxide in water to make 200 cm³ of an aqueous solution. A 25.0 cm 3 sample of this sodium hydroxide solution is placed in a conical flask and is titrated with 0.150 mol dm $^{-3}$ sulfuric acid. The equation for this reaction is shown. $$2$$ NaOH(aq) + H₂SO₄(aq) \rightarrow Na₂SO₄(aq) + 2 H₂O(I) **Table 1** shows the results of the titrations. Table 1 | Titration | Rough | 1 | 2 | 3 | |-----------------------------------|-------|-------|-------|-------| | Final reading / cm ³ | 20.75 | 40.35 | 21.05 | 40.60 | | Initial reading / cm ³ | 0.00 | 20.75 | 1.20 | 21.05 | | Titre / cm³ | 20.75 | 19.60 | 19.85 | 19.55 | | | Titre / cm³ | 20.75 | 19.60 | 19.85 | 19.55 | | |------------|----------------------------|---------------|---------------|-----------------|--------------------------|-----| | 0 2 . 1 Ca | lculate the mass of sodiun | n hydroxide u | sed to make t | ne original sol | lution.
[5 mar | ks] | Mass of sodium hydroxide ______g | | | Do | |---------|--|-----| | 0 2.2 | The student uses a funnel to fill the burette with sulfuric acid before starting the titration. After filling, the student forgets to remove the funnel from the top of the burette. | out | | | Suggest why this might affect the titre volume recorded. | | | | [1 mark] | | | | | | | | | | | | | | | 0 2 . 3 | State one advantage of using a conical flask rather than a beaker for the titration. [1 mark] | | | | | | | | | -7 | | | | | | | | | | | | | | | Turn over for the next question | 0 3 | This qu | estion is about time of | flight (TOF) m | nass spectron | netry. | | | |---------|---------------------|---------------------------|------------------------------|----------------|----------|--------|-----| | 0 3.1 | Define ¹ | the term relative atomi | c mass. | | | [2 mar | ks] | 0 3 . 2 | | ole of krypton is ionised | | | | | | | | | ass spectrum of this sa | | n has four pe | eaks. | | | | | Table 2 | 2 shows data from this | spectrum. | | | | | | | | | Tab | le 2 | | | | | | | m/z | 82 | 83 | 84 | 86 | | | | | Relative intensity | 6 | 1 | 28 | 8 | | | | Calcula | ate the relative atomic r | mass (A _r) of th | is sample of l | krypton. | | | | | Give yo | our answer to 1 decima | al place. | | | [2 mar | ks] | A r | | | _ | | | | | | | | | | | | | | | | | | | 0 3 . 3 In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE). The kinetic energy of an ion is given by the equation $KE = \frac{1}{2} mv^2$ Where: KE = kinetic energy / J m = mass / kg v = speed / m s⁻¹ In a TOF mass spectrometer, each 84 Kr $^+$ ion is accelerated to a kinetic energy of 4.83×10^{-16} J and the time of flight is 1.72×10^{-5} s Calculate the length, in metres, of the TOF flight tube. The Avogadro constant, $L = 6.022 \times 10^{23} \,\mathrm{mol^{-1}}$ [4 marks] Length of flight tube _____ ''' 8 Turn over for the next question | 0 4 | This question is about enthalpy changes. | |-------|--| | 0 4.1 | State the meaning of the term enthalpy change as applied to a chemical reaction. [1 mark] | | 0 4.2 | A student determines the enthalpy change for the reaction between calcium carbonate and hydrochloric acid. CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + CO₂(g) + H₂O(l) The student follows this method: • measure out 50 cm³ of 1.00 mol dm⁻³ aqueous hydrochloric acid using a measuring cylinder and pour the acid into a 100 cm³ glass beaker • weigh out 2.50 g of solid calcium carbonate on a watch glass and tip the solid into the acid • stir the mixture with a thermometer • record the maximum temperature reached. The student uses the data to determine a value for the enthalpy change. Explain how the experimental method and use of apparatus can be improved to provide more accurate data. Describe how this data from the improved method can be used to determine an accurate value for the temperature change. [6 marks] | | | | | , | | |---|---------------------------------------| • | • | - | | | | Question 4 continues on the next page | | | | | | 10 | |---------|--| | 0 4.3 | In a different experiment 50.0 cm ³ of 0.500 mol dm ⁻³ aqueous hydrochloric acid are reacted with 50.0 cm ³ of 0.500 mol dm ⁻³ aqueous sodium hydroxide. | | | NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H ₂ O(I) $\Delta H = -57.1 \text{ kJ mol}^{-1}$ | | | The initial temperature of each solution is 18.5 °C | | | Calculate the maximum final temperature of the reaction mixture. | | | Assume that the specific heat capacity of the reaction mixture, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$ | | | Assume that the density of the reaction mixture = 1.00 g cm ⁻³ [5 marks] | Final temperature °C | | 0 4 . 4 | Suggest how, without changing the apparatus, the experiment in Question 04.3 could be improved to reduce the percentage uncertainty in the temperature change. | [1 mark] | 0 5 | This question is about Group 2 elements and their compounds. | |-------|---| | 0 5.1 | Explain why the melting point of magnesium is higher than the melting point of sodium. | | | [2 marks] | 0 5.2 | Give an equation to show how magnesium is used as the reducing agent in the extraction of titanium. | | | Explain, in terms of oxidation states, why magnesium is the reducing agent. [2 marks] | | | Equation | | | Explanation | Question 5 continues on the next page | | | | | | | | | | | 0 5.3 | State what is observed when dilute aqueous sodium hydroxide is added to separate solutions of magnesium chloride and barium chloride. | Do not write
outside the
box | |-------|---|------------------------------------| | | [2 marks] | | | | Observation with magnesium chloride | | | | Observation with barium chloride | 6 | Do not write outside the box | |-----------|------------------------------| | | | | | | | | | | s] | This question is about shapes of molecules and ions. | | | | |--|---|----------------------------|-----------| | | Draw the shape of NCl ₃ and of NCl ₄ ⁺ | | | | | Include any lone pairs of electrons that influence the | e shape. | | | | Name the shape of NCl ₃ | | | | | State and explain the bond angle in NCl ₄ ⁺ | | [F manka] | | | | | [5 marks] | | | Shape of NCl₃ | Shape of NCl₄ ⁺ | Name of shape of NCl ₃ | | | | | Bond angle in NCl₄⁺ | | | | | Explanation of bond angle in NCl ₄ ⁺ | Turn over for the next question Do not write outside the box | 0 7 | This question is about Group 7 elements and their compounds. | |-------|---| | 0 7.1 | Chlorine is used to treat water even though it is toxic to humans. | | | Give one reason why water is treated with chlorine. | | | Explain why chlorine is added to water even though it is toxic. | | | Give an equation for the reaction of chlorine with cold water. [3 marks] | | | Reason | | | Explanation | | | Equation | 0 7.2 | Solid sodium iodide reacts with concentrated sulfuric acid to form iodine and sulfur in a redox reaction. | | |---|---|--| | Give a half-equation to show the conversion of iodide ions to iodine. | | | | | Give a half-equation to show the conversion of sulfuric acid to sulfur. | | | Give an overall equation for this redox reaction. | | | | Identify one other sulfur-containing reduction product formed when solid series reacts with concentrated sulfuric acid. | Identify one other sulfur-containing reduction product formed when solid sodium iodide | | | | [4 marks] | | | | Half-equation for the conversion of iodide ions to iodine | | | | | | | Half-equation for the conversion of sulfuric acid to sulfur Overall equation | | | | | | | | | | | Question 7 continues on the next page A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide. The student uses this method. - 600 mg of the mixture are dissolved in water to form a solution. - An excess of aqueous silver nitrate is added to the solution. This forms a precipitate containing silver chloride and silver iodide. - Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves. - The silver iodide is filtered off from the solution, and is then washed and dried. The mass of the silver iodide obtained is 315 mg | 0 7.3 | Silver nitrate is added to the solution. Suggest why an excess is used. | 1 mark] | |-------|---|---------| | 0 7.4 | Calculate the amount, in moles, of silver iodide obtained. $M_{\rm r}({\rm AgI}) = 234.8$ | 1 mark] | | | Amount of silver iodide | mol | | Do not wri | te | |------------|----| | outside th | e | | box | | | 0 7.5 | Calculate, using your answer to Question 07.4 , the mass, in grams, of sodion the mixture. | um iodide | outs | |-------|--|-----------|------| | | $M_{\rm r}({\rm NaI}) = 149.9$ | [1 mark] | | | | Mass of sodium iodide | g | | | 0 7.6 | Calculate, using your answer to Question 07.5 , the percentage by mass of sodium chloride in the mixture. | [2 marks] | | | | | | | | | Percentage of sodium chloride | | 1: | | | Turn over for the next question | | | | | | | | | | | | | | | | | | - 0 8 This question is about a volatile liquid, A. - 0 8 . 1 A student does an experiment to determine the relative molecular mass (M_r) of liquid **A** using the apparatus shown in **Figure 2**. The student injects a sample of **A** into a gas syringe in an oven. At the temperature of the oven, liquid **A** vaporises. Figure 2 Table 3 shows the student's results. Table 3 | Mass of fine needle syringe and contents before injecting | 11.295 g | |---|-----------------------| | Mass of fine needle syringe and contents after injecting | 10.835 g | | Volume reading on gas syringe before injecting | 0.0 cm ³ | | Volume reading on gas syringe after injecting | 178.0 cm ³ | | Pressure of gas in syringe | 100 kPa | | Temperature of oven | 120 °C | | | Calculate the M_r of A . | | |-------|--|-----------| | | Give your answer to 3 significant figures. | | | | The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ | [4 marks] | | | | | | | M_{r} | | | 0 8.2 | The student noticed that some of the liquid injected into the gas syringe did not vaporise. | | | | Explain the effect that this has on the M_r calculated by the student. | [2 marks] | | | | | | | | | | | Question 8 continues on the next page | | | | | | Table 3 is repeated here. # Table 3 | Mass of fine needle syringe and contents before injecting | 11.295 g | |---|-----------------------| | Mass of fine needle syringe and contents after injecting | 10.835 g | | Volume reading on gas syringe before injecting | 0.0 cm ³ | | Volume reading on gas syringe after injecting | 178.0 cm ³ | | Pressure of gas in syringe | 100 kPa | | Temperature of oven | 120 °C | **0** 8. 3 Each reading on the balance used to record the mass of the fine needle syringe and contents had an uncertainty of ±0.001 g Calculate the percentage uncertainty in the mass of liquid ${\bf A}$ injected in this experiment. [1 mark] | Percentage uncertainty | | |------------------------|--| | | | # **Section B** | | Answer an questions in this section. | | |--------------------------|--|----------------| | Onlyana | | | | | nswer per question is allowed. nswer completely fill in the circle alongside the appropriate answer. | | | CORRECT MET | HOD WRONG METHODS | | | If you want | to change your answer you must cross out your original answer as sho | wn. | | If you wish
as shown. | to return to an answer previously crossed out, ring the answer you now | wish to select | | | o your working in the blank space around each question but this will not additional sheets for this working. | be marked. | | | | | | 0 9 | Which atom has the smallest number of neutrons? | [1 mark] | | | | | | | A ³ H | 0 | | | B ⁴ He | 0 | | | C ⁵ He | 0 | | | D ⁴ Li | 0 | | 1 0 | Which species contains bonds that have different polarities? | | | | | [1 mark] | | | A NH ₄ ⁺ | 0 | | | B CCl ₄ | 0 | | | C CH₃Cl | 0 | | | D H ₃ O ⁺ | 0 | | | | | | | | | | | | | | 1 1 | Which compound has hydrogen bonding? | | [1 mark] | |-----|--|----------|--------------------| | | A NaH | 0 | | | | B NH ₃ | 0 | | | | C HI | 0 | | | | D SiH ₄ | 0 | | | 1 2 | Which reaction has an enthalpy change equal to the standard enthalp lithium fluoride? | y of for | mation of [1 mark] | | | A Li(g) + $\frac{1}{2}$ F ₂ (g) \rightarrow LiF(s) | 0 | | | | B $Li^+(g) + F^-(g) \rightarrow LiF(s)$ | 0 | | | | C Li ⁺ (aq) + F ⁻ (aq) \rightarrow LiF(s) | 0 | | | | D $Li(s) + \frac{1}{2}F_2(g) \rightarrow LiF(s)$ | 0 | | | 1 3 | NO_2^- ions can be reduced in acidic solution to NO How many electrons are gained when each NO_2^- ion is reduced? | | [1 mark] | | | A 1 | 0 | | | | B 2 | 0 | | | | C 3 | 0 | | | | D 4 | 0 | | | | | | | | | | | | | | | | | | Do not v | vrit | |----------|------| | outside | the | | box | | | 1 4 | Which is the electron configuration of an atom with only two unpaired | d electrons? [1 mark] | |-----|---|-----------------------| | | A $1s^2 2s^2 2p^3$ | 0 | | | B $1s^22s^22p^4$ | 0 | | | C 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ | 0 | | | $\textbf{D} \ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ | 0 | | 1 5 | Which represents the correct order of increasing radius of the ions? | [1 mark] | | | A F ⁻ O ²⁻ Li ⁺ Be ²⁺ | 0 | | | B Li ⁺ Be ²⁺ O ²⁻ F ⁻ | 0 | | | C Be ²⁺ Li ⁺ F ⁻ O ²⁻ | 0 | | | D O ²⁻ F ⁻ Li ⁺ Be ²⁺ | 0 | | 1 6 | Which compound contains a co-ordinate bond? | [1 mark] | | | A HF | 0 | | | B NH ₃ | 0 | | | C CHCl₃ | 0 | | | D NH ₄ Cl | 0 | Do not write outside the box | 1 7 | Which property increases down Group 7? | [| 1 mark] | |-----|---|---|---------| | | A ability to oxidise a given reducing agent | 0 | | | | B boiling point | 0 | | | | C electronegativity | 0 | | | | D first ionisation energy | 0 | | | 1 8 | Which of these elements has the highest melting point? | ſ | 1 mark] | | | A Argon | 0 | | | | B Chlorine | 0 | | | | C Silicon | 0 | | | | D Sulfur | 0 | | | 1 9 | Which statement is not always correct for a reaction at equilibrium? | | | | | reactants ⇌ products | [| 1 mark] | | | A The concentrations of the reactants and products are equal. | 0 | | | | B The equilibrium can be achieved starting from the reactants. | 0 | | | | C The equilibrium can be achieved starting from the products. | 0 | | | | D The rate of the forward reaction is equal to the rate of the reverse reaction. | 0 | Two reactions of iron with oxygen are shown. $$Fe(s) + \frac{1}{2}O_2(g) \rightarrow FeO(s)$$ $$\Delta H = -272 \text{ kJ mol}^{-1}$$ $$2 \operatorname{Fe}(s) + \frac{3}{2} O_2(g) \to \operatorname{Fe}_2 O_3(s)$$ $\Delta H = -822 \text{ kJ mol}^{-1}$ $$\Delta H = -822 \text{ kJ mol}^{-1}$$ What is the enthalpy change, in kJ mol⁻¹, for this reaction? $$2\,\text{FeO}(s) + \tfrac{1}{2}\,O_2(g) \rightarrow \text{Fe}_2O_3(s)$$ [1 mark] **A** +550 **B** -278 **C** -1094 **D** -1372 | \sim | | |--------|--| 2 1 Which compound contains chlorine in an oxidation state of +1? [1 mark] A Cl₂O | _ | | |---|--| | | | | 1 | | | | | B KClO₃ | 0 | | |---|--| |---|--| C ClF₃ | _ | | |---|---------| | Г | | | | \circ | D CCl₄ Turn over for the next question | Dο | not | write | |----|-------|-------| | ou | tside | e the | | | ho | x | | 2 2 Which equation shows a redo | |---------------------------------| |---------------------------------| reaction that does not occur? [1 mark] $$\textbf{A} \ \, \mathsf{Br}_2(\mathsf{aq}) + 2\,\mathsf{KI}(\mathsf{aq}) \to \mathsf{I}_2(\mathsf{aq}) + 2\,\mathsf{KBr}(\mathsf{aq})$$ $$\textbf{B} \ \, \text{Cl}_2(g) + 2 \, \text{KI}(aq) \rightarrow \text{I}_2(aq) + 2 \, \text{KCI}(aq)$$ C $$Cl_2(g) + 2KBr(aq) \rightarrow Br_2(aq) + 2KCl(aq)$$ $$\textbf{D} \hspace{0.2cm} I_2(aq) + 2 \hspace{0.1cm} \mathsf{KBr}(aq) \rightarrow \mathsf{Br}_2(aq) + 2 \hspace{0.1cm} \mathsf{KI}(aq)$$ [1 mark] A CF₄ B PCl₅ \mathbf{C} CO_2 D Cl₂O # **END OF QUESTIONS** |
 | | |------|--| | Question number | Additional page, if required. Write the question numbers in the left-hand margin. | |-----------------|---| Question number | Additional page, if required.
Write the question numbers in the left-hand margin. | |-----------------|--| Question number | Additional page, if required. Write the question numbers in the left-hand margin. | |-----------------|---| 32 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED # Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. Copyright © 2020 AQA and its licensors. All rights reserved. IB/M/Jun20/7404/1 Do not write outside the