| Please write clearly ir | ı block capitals. | |-------------------------|--------------------------------| | Centre number | Candidate number | | Surname | | | Forename(s) | | | Candidate signature | I declare this is my own work. | # AS CHEMISTRY Paper 2 Organic and Physical Chemistry Thursday 21 May 2020 Morning Time allowed: 1 hour 30 minutes #### **Materials** For this paper you must have: - the Periodic Table/Data Sheet, provided as an insert (enclosed) - a ruler with millimetre measurements - a scientific calculator, which you are expected to use where appropriate. #### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. - If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). - · All working must be shown. - Do all rough work in this book. Cross through any work you do not want to be marked. ## want to be marked. #### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 80. #### Advice You are advised to spend about 65 minutes on **Section A** and 25 minutes on **Section B**. | For Exam | For Examiner's Use | | | | |-----------|--------------------|--|--|--| | Question | Mark | | | | | 1 | | | | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | | 6 | | | | | | 7 | | | | | | 8 | | | | | | Section B | | | | | | TOTAL | | | | | #### **Section A** Answer all questions in this section. | 0 1 | This question is about 1-chloropropane. | | |-------|---|-----------| | 0 1.1 | Define the term standard enthalpy of formation. | [2 marks] | | | | | 0 1. 2 The equation for a reaction used to manufacture 1-chloropropane is $$3 \text{ CH}_3 \text{CH}_2 \text{CH}_2 \text{OH}(I) + \text{PCl}_3(I) \rightarrow 3 \text{ CH}_3 \text{CH}_2 \text{CH}_2 \text{Cl}(I) + \text{H}_3 \text{PO}_3(s)$$ The enthalpy change for this reaction, ΔH , is -114 kJ mol^{-1} Table 1 contains some standard enthalpy of formation data. Table 1 | Substance PCl ₃ (I) | | CH ₃ CH ₂ CH ₂ Cl(I) | H ₃ PO ₃ (s) | | |-------------------------------------|------|---|------------------------------------|--| | ∆f H ^e / kJ mol⁻¹ | -339 | -130 | - 972 | | Calculate a value for the standard enthalpy of formation of propan-1-ol using the enthalpy change for the reaction and data from **Table 1**. [3 marks] Standard enthalpy of formation _____ kJ mol⁻¹ | 0 1.3 | 1-chloropropane can also be produced by the reaction between propane and chlorine in the presence of ultraviolet light. | |-------|---| | | State why ultraviolet light is needed for this reaction to occur. | | | Give an equation for each propagation step in the formation of 1-chloropropane from propane. | | | Why ultraviolet light is needed | | | Propagation step 1 | | | Propagation step 2 | | 0 1.4 | The C–Cl bond in 1-chloropropane is polar because carbon and chlorine have different electronegativities. Define the term electronegativity. [1 mark] | | | | | | Question 1 continues on the next page | ot write de the ox | 0 1 . 5 | Ammonia reacts with 1-chloropropane to form propylamine. | | Do no
outsid
bo | |---------|--|-----------|-----------------------| | | Name and outline the mechanism for this reaction. | [5 marks] | | | | Name of mechanism | [o marko] | | | | Outline of mechanism | 14 | Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED 0 2 A student investigates the effect of temperature on the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid. $$Na_2S_2O_3(aq) + 2\,HCl(aq) \longrightarrow 2\,NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$$ The student mixes the solutions together in a flask and places the flask on a piece of paper marked with a cross. The student records the time for the cross to disappear. The cross disappears because the mixture becomes cloudy. Table 2 shows the student's results. Table 2 | Temperature / °C | 22 | 31 | 36 | 42 | 49 | 54 | |-------------------------------------|--------|--------|--------|--------|--------|----| | Time, t, for cross to disappear / s | 87 | 48 | 36 | 26 | 44 | 12 | | $\frac{1}{t}/s^{-1}$ | 0.0115 | 0.0208 | 0.0278 | 0.0385 | 0.0227 | | 0 2 . 1 The student uses a stopwatch to measure the time. The stopwatch shows each time to the nearest 0.01 s Suggest why the student records the times to the nearest second and not to the nearest 0.01 s [1 mark] $\begin{bmatrix} \mathbf{0} & \mathbf{2} \end{bmatrix}$. The rate of reaction is proportional to $\frac{1}{t}$ Complete Table 2. [1 mark] Plot the values of $\frac{1}{t}$ against temperature on **Figure 1**. 0 2 . 3 Draw a line of best fit. [2 marks] Figure 1 0.090 0.080 0.070 0.060 0.050 $\frac{1}{t}$ / s⁻¹ 0.040 0.030 0.020 0.010 0 40 10 20 30 50 60 Temperature / °C Question 2 continues on the next page | 0 2 . 4 | Use your line of best fit to estimate the time for the cross to disappear at 40 $^{\circ}$ C Show your working. | out | |---------|--|-----| | | [1 mark] | | | | | | | | Time s | | | 2.5 | Suggest, by considering the products of this reaction, why small amounts of reactants are used in this experiment. [1 mark] | | | | | | | | | | | 2.6 | The student could do the experiment at lower temperatures using an ice bath. | | | | Suggest why the student chose ${f not}$ to carry out experiments at temperatures in the range 1–10 $^{\circ}{\mbox{C}}$ | | | | [1 mark] | Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED 0 3 A student investigates two experimental methods of making methylpropanal. The equations for these two methods are shown. Method 2 OH + $$H_2O_2$$ $M_r = 74.0$ H_2O_2 $M_r = 72.0$ In each method, the student uses 1.00 g of organic starting material. The yield of methylpropanal obtained using each method and other data are included in **Table 3**. Table 3 | | Method 1 | Method 2 | |------------------------------|----------|----------| | Yield of methylpropanal / mg | 552 | 778 | | Percentage yield | | 80.0% | | Percentage atom economy | 62.1% | | Calculate the percentage yield for Method 1. Calculate the percentage atom economy for Method 2. State the importance of percentage yield and percentage atom economy when choosing the method used to make a compound. [6 marks] | | % yield | | |--------------------------------------|----------------|--| | lungartana of marsantana viald | | | | Importance of percentage yield | % atom economy | | | Importance of percentage atom econor | % atom economy | | | Importance of percentage atom econor | | | | Importance of percentage atom econor | | | | Importance of percentage atom econor | | | | 0 4 | This question is about pentan-2-ol and pent-1-ene. | |-------|---| | 0 4.1 | The boiling point of pentan-2-ol is 119 °C The boiling point of pent-1-ene is 30 °C | | | Explain why pentan-2-ol has a higher boiling point than pent-1-ene. [3 marks] | Do not write | |--------------| | outside the | | box | | 0 4 . 2 | Pent-1-ene is formed by the elimination of water from pentan-2-ol. | | |---------|--|-----------| | | State the reagent and condition for this reaction. | | | | Outline the mechanism for this reaction. | [5 marks] | | | Reagent | | | | Condition | | | | Outline of mechanism | | 8 Turn over for the next question | 0 5 | Explain the differences between structural isomerism and stereoisomerism. Use examples to show how compounds with the molecular formula C_4H_8 e stereoisomerism and the three types of structural isomerism. | | |-------|---|-----------| | | | [6 marks] | Do not write | |---|------------------------------------| | | Do not write
outside the
box | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | _ | | | | | | | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | | 6 | | _ | | Turn over ▶ | 0 | 6 | This | a | |---|---|------|---| This question is about poly(chloroethene), commonly known as PVC. - 0 6 . 1 - Give an equation, showing structural formulas, for the conversion of chloroethene into poly(chloroethene). [3 marks] 0 6 . 2 State what you would observe if bromine water was added to poly(chloroethene). Explain this observation. [2 marks] Observation Explanation 0 6 . 3 Plasticisers are often added during the manufacture of PVC. The structure of the plasticiser DEHP is shown. Deduce the molecular formula of DEHP and state why a plasticiser is added to PVC. [2 marks] Molecular formula Why a plasticiser is added _____ 7 | 0 7 | This question is about ethanedioic acid $(H_2C_2O_4)$ which is a dicarboxylic acid. | |-------|--| | 0 7.1 | Draw the skeletal formula of ethanedioic acid. [1 mark] | | | | | 0 7.2 | Ethanedioic acid is formed by the oxidation of ethane-1,2-diol (HOCH ₂ CH ₂ OH). | | | State suitable reagent(s) and a condition for this reaction. [2 marks] | | | Reagent(s) | | | Condition | | | | | | Question 7 continues on the next page | | | | | | | | | | | | | | Dο | not | V | vrite | |----|-------|---|-------| | ou | tside | Э | the | | | ho | v | | | 0 | 7 |]. | 3 | |---|---|----|---| | | | 1 | | Ethanedioic acid reacts with an excess of sodium hydroxide to form sodium ethanedioate. $$H_{2}C_{2}O_{4}(aq) + 2\,NaOH(aq) \rightarrow \,\, Na_{2}C_{2}O_{4}(aq) + 2\,H_{2}O\left(I\right)$$ A student mixes $10.0~\text{cm}^3$ of $0.400~\text{mol}~\text{dm}^{-3}$ ethanedioic acid with $50.0~\text{cm}^3$ of $0.200~\text{mol}~\text{dm}^{-3}$ sodium hydroxide. Show that the sodium hydroxide is in excess. Calculate the mass, in mg, of sodium ethanedioate that can be formed in this reaction. [5 marks] | Mass of sodium ethanedioate | mo | |-----------------------------|----| | | | | 0 | 8 | |---|---| Hydrogen gas can be made by reacting ethanol with steam in the presence of a catalyst. $$C_2H_5OH(g) + H_2O(g) \Rightarrow 2CO(g) + 4H_2(g)$$ 0 8 . 1 Give an expression for K_c for this equilibrium. State its units. [2 marks] Kc Units of K_c ### 0 8 . 2 **Table 4** shows the amount of each substance in an equilibrium mixture in a container of volume 750 cm³ Table 4 | Substance | C ₂ H ₅ OH(g) | H ₂ O(g) | CO(g) | H ₂ (g) | |---------------------------|-------------------------------------|---------------------|-------|--------------------| | Amount of substance / mol | 0.0750 | 0.156 | 0.110 | 0.220 | Calculate K_c [3 marks] **K**c Question 8 continues on the next page | 0 8.3 | The pressure of the equilibrium mixture was increased by reducing the volume of the container at constant temperature. | ou | |-------|--|----| | | Predict the effect of increasing the pressure on the equilibrium yield of hydrogen. Explain your answer. | | | | Predict the effect of increasing the pressure on the value of K_c [4 marks] | | | | Effect on equilibrium yield of hydrogen | | | | Explanation | | | | | | | | | | | | Effect on value of K _c | #### Section B Answer all questions in this section. | | <u> </u> | | |-----------------------|--|------------------| | • | answer per question is allowed. nswer completely fill in the circle alongside the appropriate answer. | | | CORRECT MET | | | | If you want | to change your answer you must cross out your original answer as sho | own. | | If you wish as shown. | to return to an answer previously crossed out, ring the answer you now | v wish to select | | - | o your working in the blank space around each question but this will no
e additional sheets for this working. | t be marked. | | 0 9 | Which statement is correct about thermal cracking? | [1 mark] | | | A A pressure between 100 and 200 kPa is used. | 0 | | | B Aromatic hydrocarbons are the major products. | 0 | | | C C–C bonds are broken. | 0 | | | D Zeolite catalysts are used. | 0 | | 1 0 | Which statement is not correct about ozone? | [1 mark] | | | A It absorbs harmful ultraviolet radiation in the upper atmosphere. | 0 | | | B It decomposes to form oxygen. | 0 | | | C Its decomposition is catalysed by chlorine molecules. | 0 | | | D Ozone holes are regions of the upper atmosphere where there is a reduced concentration of ozone. | 0 | | | | | | Do not v | vrite | |----------|-------| | outside | the | | box | | | 1 1 | What is the IUPAC name for this compound? | | |-----|--|----------| | | $\begin{array}{c} CH_3 \\ CH_3 - CH_2 - CH - C - CH_3 \\ \mid \mid \mid \\ F CH_3 \end{array}$ | [1 mark] | | | A 2-dimethyl-3-fluoropentane | 0 | | | B 2,2-dimethyl-3-fluoropentane | 0 | | | C 3-fluoro-2,2-dimethylpentane | 0 | | | D 3-fluoro-2-dimethylpentane | 0 | | 1 2 | What is the IUPAC name of the major product of the reaction between 2-ethylbut-1-ene and hydrogen bromide? | [1 mark] | | | A 1-bromo-2-ethylbutane | 0 | | | B 2-bromo-2-ethylbutane | 0 | | | C 2-bromo-2-methylpentane | 0 | | | D 3-bromo-3-methylpentane | 0 | | 1 3 | Which can be used to distinguish between these two compounds? | | | | (CH₃)₂CHCH₂CHO and (CH₃)₃CCHO | [1 mark] | | | A Acidified potassium dichromate(VI) | 0 | | | B Fingerprint region of infrared spectrum | 0 | | | C <i>M</i> _r value in high resolution mass spectrometry | 0 | | | D Tollens' reagent | 0 | | | | | | | | | | 1 4 | An excess of methane reacts with chlorine in the presence of ultraviol | et radia | ation. | |-----|---|----------|-------------------| | | What are the main products of this reaction? | | [1 mark] | | | A CCl ₄ and H ₂ | 0 | | | | B CCl ₄ and HCl | 0 | | | | C CH ₃ Cl and H ₂ | 0 | | | | D CH₃Cl and HCl | 0 | | | 1 5 | In which reaction does the inorganic reagent act initially as an electrop | phile? | [1 mark] | | | A bromoethane with ethanolic potassium hydroxide | 0 | | | | B chloroethane with aqueous sodium hydroxide | 0 | | | | C ethane with chlorine | 0 | | | | D ethene with concentrated sulfuric acid | 0 | | | 1 6 | What is the empirical formula of a hydrocarbon that contains 90% carl | bon by | mass?
[1 mark] | | | A C ₂ H ₃ | 0 | | | | B C ₃ H ₂ | 0 | | | | C C ₃ H ₄ | 0 | | | | D C ₄ H ₃ | 0 | 1 7 | Which compound has the lowest relative molecular mass? | [1 mark] | |-----|--|--------------------------| | | A ethanoic acid | 0 | | | B 1-fluoropropane | 0 | | | C propanenitrile | 0 | | | D propylamine | 0 | | 1 8 | Which statement is correct about the production and use of ethanol as | s a biofuel?
[1 mark] | | | A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air. | 0 | | | B Biofuel ethanol is purified by fractional distillation. | 0 | | | C No carbon dioxide is released when biofuel ethanol is burned. | 0 | | | D Biofuel ethanol burns with a cleaner flame than ethanol made by hydration of ethene. | 0 | | 1 9 | What is the minimum volume of 0.0500 mol dm ⁻³ aqueous bromine no completely with 0.0200 g of buta-1,3-diene? | eeded to react | | | $(M_{\rm r} \text{ of buta-1,3-diene} = 54.0)$ | [1 mark] | | | A 7.40 cm ³ | 0 | | | B 14.8 cm ³ | 0 | | | C 29.6 cm ³ | 0 | | | D 67.5 cm ³ | 0 | 2 0 | Which statement about the molecules in a sample of a gas is correct? | | [1 mark] | |-----|--|---|----------| | | A At a given temperature they all move at the same speed. | 0 | | | | B At a given temperature their average kinetic energy is constant. | 0 | | | | C As temperature increases, there are more molecules with the most probable energy. | 0 | | | | D As temperature decreases, there are fewer molecules with the mean energy. | 0 | | | 2 1 | Some enthalpy change data are shown. | | | | | $C(s) + 2 H_2(g) \rightarrow CH_4(g)$ $\Delta H = -75 \text{ kJ mol}^{-1}$ $H_2(g) \rightarrow 2 H(g)$ $\Delta H = +436 \text{ kJ mol}^{-1}$ | | | | | What is the enthalpy change, in kJ mol ⁻¹ , for the following reaction? | | | | | $CH_4(g) \rightarrow C(s) + 4H(g)$ | | [1 mark] | | | A -947 | 0 | | | | B –361 | 0 | | | | C +361 | 0 | | | | D +947 | 0 | | | | | | | | | | | | | | Turn over for the next question | 2 | ^ | |---|---| | _ | | The temperature changed from 21.8 °C to 19.2 °C during a calorimetry experiment. The uncertainty of each reading of the thermometer is ±0.1 °C What is the percentage uncertainty in the temperature change? [1 mark] 0 0 0 0 ### 2 3 An experiment is done to determine the enthalpy of combustion of a fuel using a calorimeter containing water. b = mass of fuel burned / g w = mass of water heated / g ΔT = temperature rise of water / K $M_{\rm r}$ = relative molecular mass of fuel c = specific heat capacity of water / J K⁻¹ g⁻¹ Which expression gives the enthalpy of combustion (in J mol⁻¹), assuming there is no heat loss? [1 mark] 15 $$\mathbf{A} \qquad -\frac{c \ w \ \Delta T \ M_{\rm r}}{b}$$ 0 $$B \qquad -\frac{c b \Delta T M_{\rm r}}{w}$$ 0 $$\mathbf{C} \qquad -\frac{c \, b \, w \, M_{r}}{\Delta T}$$ 0 $$\mathbf{D} \qquad -\frac{c \ b \ w \ \Delta T}{M_{\rm r}}$$ 0 #### **END OF QUESTIONS** | Question number | Additional page, if required. Write the question numbers in the left-hand margin. | |-----------------|---| Question number | Additional page, if required. Write the question numbers in the left-hand margin. | |-----------------|---| Question number | Additional page, if required. Write the question numbers in the left-hand margin. | | |-----------------|---|--| Question number | Additional page, if required.
Write the question numbers in the left-hand margin. | |-----------------|--| There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED #### Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. Copyright © 2020 AQA and its licensors. All rights reserved. IB/M/Jun20/7404/2 Do not write outside the