

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	_

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Chemistry Paper 1F

Thursday 14 May 2020

Morning

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0 1	This question is about acids and bases.	Do not write outside the box
0 1.1	What is the pH of sulfuric acid?	
	[1 mark] Tick (✓) one box.	
01.2	An acid reacts with zinc to produce zinc chloride and hydrogen. Which acid reacts with zinc to produce zinc chloride? Tick (~) one box. Hydrochloric acid	
01.3	What type of substance is zinc chloride? Tick (✓) one box. Alkali Base Salt	

0 1.4	An alkali is a base in solution.	Do not write outside the box
	Which compound is an alkali?	
	Tick (✓) one box. [1 mark]	
	Sodium hydroxide	
	Sodium nitrate	
	Sodium sulfate	
0 1.5	The formula of the copper ion is Cu ²⁺	
	The formula of the oxide ion is O ²⁻	
	What is the formula of copper oxide? [1 mark]	
	Tick (✓) one box.	
	Cu ₂ O ₂ CuO ₂ CuO	
	Question 1 continues on the next page	
		a

	A student reacts an acid with copper oxide.	Do not w outside t box
0 1.6	The reaction between the acid and copper oxide is very slow at room temperature.	
	How could the student speed up the reaction? [1 ma	urk]
0 1.7	Complete the sentence to show how the student makes sure that all the acid reacts.	
	Choose the answer from the box. [1 ma	ırk]
	in excess in solution molten soluble	
	The student adds copper oxide to the acid until the copper oxide is	

5

Do not write outside the

box

This is the method used.

copper sulfate solution.

0 2

- 1. Add 25 cm³ of copper sulfate solution to a beaker.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 1.0 g of metal **X** and stir.
- 4. Measure the highest temperature reached when metal **X** is added to copper sulfate solution.
- 5. Repeat steps 1 to 4 with different metals.

Figure 1 shows the apparatus used.

Figure 2 shows the thermometer reading of the copper sulfate solution at the start of the investigation.

0 2 . 1	The highest temperature reached w was 35.5 °C	vhen metal 2	X was adde	d to copper	sulfate solu	ition
	Determine the temperature change	when meta	I X is addec	I to copper s	sulfate solut	tion.
	Use Figure 2.					
					[2 m	arks]
	Highest temperature = 35.5	°C				
	Temperature at start =	°C				
	Temperature change =	°C				
0 2.2	Give two variables the student sho	uld keep the	e same in th	is investiga		arks]
	1				-	
	2					
			-1 M			
02.3	The student repeated the experime		al Y .			
0 2.3	The student repeated the experime Table 1 shows four results for meta	al Y .				
0 2.3						
) 2.3		al Y .		Test 3	Test 4]
02.3		al Y. Table 1	1	Test 3 9.5	Test 4 9.2	
0 2.3	Table 1 shows four results for meta Temperature change in °C	al Y. Table 1 Test 1 9.2	Test 2 7.3			
02.3	Table 1 shows four results for meta Temperature change in °C Calculate the mean temperature change in °C	al Y. Table 1 Test 1 9.2 ange for me	Test 2 7.3			
0 2.3	Table 1 shows four results for meta Temperature change in °C	al Y. Table 1 Test 1 9.2 ange for me	Test 2 7.3		9.2]] arks]
0 2.3	Table 1 shows four results for meta Temperature change in °C Calculate the mean temperature change in °C	al Y. Table 1 Test 1 9.2 ange for me	Test 2 7.3		9.2] arks]
02.3	Table 1 shows four results for meta Temperature change in °C Calculate the mean temperature change in °C	al Y. Table 1 Test 1 9.2 ange for me	Test 2 7.3		9.2] arks]
0 2.3	Table 1 shows four results for meta Temperature change in °C Calculate the mean temperature change in °C	al Y. Table 1 Test 1 9.2 ange for me	Test 2 7.3		9.2	arks]
02.3	Table 1 shows four results for meta Temperature change in °C Calculate the mean temperature change in °C	al Y. Table 1 Test 1 9.2 ange for me	Test 2 7.3		9.2	arks]

	The more reactive the metal ac temperature change.	dded to cop	per sulfate solution, the	greater the	
	Figure 3 shows a reactivity se	ries.			
		Fig	ure 3		
	Potassium		N most reactive)	
	Calcium				
	Magnesiur	n			
	Zinc				
	Copper				
	Silver		least reactive	9	
02.4	The student repeated the expe	eriment.			
	The student added:				
	magnesium to copper sulfate	e solution			
	• an unknown metal A to copp	per sulfate s	olution.		
	Table 2 shows the results.	T -1			
			ble 2		
	Metal		erature change in °C		
	Magnesii Metal A	um	12 8		
			0		
	The student concludes metal A is zinc. Give one reason why the student is correct.				
	Use Figure 3 and Table 2.				
				[1 mark]	

0 2 . 5	The student did the experiment with silver and copper sulfate solution.	Do not write outside the box
	What happens to the temperature of the mixture?	
	Use Figure 3.	
	[1 mark] Tick (✓) one box.	
	Decreases	
	Increases	
	Stays the same	
02.6	Suggest one reason why the student should not add potassium metal to copper sulfate solution. [1 mark]	
02.7	100 cm ³ of the copper sulfate solution contains 1.8 g of copper sulfate. Calculate the mass of copper sulfate in 25 cm ³ of this copper sulfate solution. [2 marks]	
	Mass =g	11
	Turn over for the next question	

IB/M/Jun20/8464/C/1F

Turn over ►

0 3	This question is about gold and compounds of gold.	Do not write outside the box
	In the alpha particle scattering experiment alpha particles are fired at gold foil	
	Alpha particles are positively charged.	
	Figure 4 shows the results.	
	Figure 4	
ļ	Alpha particle beam Deflected alpha parti	are ected
0 3.1	Some alpha particles are deflected.	
	Complete the sentence.	
	Choose the answer from the box.	[1 mark]
	negatively charged not charged positively charged	
	Some alpha particles are deflected because	
	the nucleus of the atom is	

0 3.2	Why are most alpha particles not deflected?	[1 mark]	Do not write outside the box
	Tick (✓) one box.		
	The atom is a tiny sphere that cannot be divided.		
	The atom is mainly empty space.		
	The electrons orbit the nucleus at specific distances.		
03.3	What was one conclusion from the alpha particle scattering experiment? Tick (\checkmark) one box.	[1 mark]	
	The mass is concentrated at the centre of the atom.		
	The mass is concentrated at the edge of the atom.		
	The mass is spread evenly throughout the atom.		
	Gold reacts with the elements in Group 7 of the periodic table.		
0 3.4	What are Group 7 elements known as?	[1 mark]	
	Tick (✓) one box.		
	Alkali metals		
	Halogens		
	Noble gases		

IB/M/Jun20/8464/C/1F

03.5	Fluorine, chlorine and bromine react with gold. Which element will be the most reactive with gold? Tick (✓) one box. Fluorine Chlorine Bromine 3.94 g of gold reacts with chlorine to produce 6.07 g of gold chloride. The word equation for the reaction is: gold + chlorine → gold chloride	Do not write outside the box
	gold + chlorine \rightarrow gold chloride Calculate the mass of chlorine that reacts with 3.94 g of gold. [1 mark]	
	Mass = g	
03.7	Calculate the relative formula mass (M_r) of gold chloride (AuCl ₃). Relative atomic masses (A_r): Cl = 35.5 Au = 197 [2 marks]	
	Relative formula mass (<i>M</i> _r) =	8

		Do not with
0 4	This question is about elements and compounds.	Do not write outside the box
04.1	Figure 5 shows the proportion of elements in the periodic table that are metals and non-metals.	
	Figure 5	
	Metals Non-metals	
	Determine the percentage of the elements in Figure 5 that are metals. [2 marks]	
	Percentage =%	
04.2	Give two physical properties of metals. [2 marks] 1	
	2	
04.3	Sodium reacts with chlorine to produce sodium chloride. Balance the equation for the reaction. [1 mark]	
	$___ Na + Cl_2 \rightarrow __ NaCl$	

	Table 3 shows the melti	ng points of th	ree Group 1 metals.		Do not write outside the box
			Table 3		
		Metal	Melting point in °C		
		Lithium	180		
		Sodium	98		
		Potassium	63		
0 5.3	What state is lithium at 1	00 °C?			
	Use Table 3.			[1 mark]	
	Tick (✓) one box.				
	Gas Liq	uid	Solid		
	Complete the graph in F	iguro 9			
0 5.4	Use Table 3 .	igure o.			
	You should:				
	complete the scale on	the y-axis			
	 draw bars to show the 		s of sodium and potass	ium. [3 marks]	

Turn over ►

Do not write outside the Lithium and potassium are in the same group of the periodic table. 0 5 . 6 box Figure 10 represents the electronic structures of a lithium atom and of a potassium atom. Figure 10 Lithium atom Potassium atom * Κ Give two reasons why potassium is more reactive than lithium. [2 marks] 1_____ 2 11 Turn over ►

06	This question is about the extraction of aluminium.	Do not write outside the box
06.1	An aluminium atom is represented as:	
	²⁷ ₁₃ Al	
	Give the number of electrons and neutrons in the aluminium atom. [2 marks]	
	Number of electrons	
	Number of neutrons	
	Aluminium is extracted by the electrolysis of a molten mixture of aluminium oxide and cryolite.	
	Figure 11 shows the cell used for the electrolysis.	
	Figure 11	
	Metal wire	
	Negative electrode	
	Molten mixture of aluminium oxide and cryolite	
	Molten aluminium	
06.2	Aluminium is produced by the reduction of aluminium oxide (Al_2O_3).	
	What is meant by the term reduction? [1 mark]	

06.3	Oxygen is formed at the positive carbon electrodes.		Do not write outside the box
	Explain why the positive carbon electrodes must be continually replaced.	[2	
		[3 marks]	
06.4	A substance conducts electricity because of free moving, charged particles.		
	What are the free moving, charged particles in a:		
	 carbon electrode (made from graphite) 		
	molten mixture of aluminium oxide and cryolite		
	metal wire?	[3 marks]	
	Carbon electrode (made from graphite)		
	Molten mixture of aluminium oxide and cryolite		
	Metal wire		9
	Turn over for the next question		
	rum over for the next question		

Turn over ►

0 7	This question is about substances with covalent bonding.	Do not write outside the box
	Figure 12 shows a ball and stick model of a water molecule (H ₂ O).	
	Figure 12	
	Suggest one limitation of using a ball and stick model for a water molecule. [1 mark]
		-
07.2	Ice has a low melting point.	
	Water molecules in ice are held together by intermolecular forces.	
	Complete the sentence. [1 mark	1
	Ice has a low melting point because the	
	intermolecular forces are	
		-

IB/M/Jun20/8464/C/1F

	Diamond has a giant covalent structure.	Do not write outside the box
0 7.4	What is the number of bonds formed by each carbon atom in diamond? Tick (✓) one box. 2 3 4 8	
0 7.5	Give two physical properties of diamond. [2 marks] 1 2	
0 7.6	Name two other substances with giant covalent structures. [2 marks]	
	1 2	8

0 8 Some students investigated the thermal decomposition of metal carbonates.

The word equation for the reaction is:

metal carbonate \rightarrow metal oxide + carbon dioxide

The students made the following hypothesis:

'When heated the same mass of any metal carbonate produces the same mass of carbon dioxide.'

The students heated a test tube containing copper carbonate.

Table 4 shows their results.

Table 4

Time the test tube containing copper carbonate was heated in mins	0	2	4	6
Mass of test tube and contents in g	17.7	17.1	17.0	17.0

Plan a method the students could use to test their hypothesis.		Do not write outside the box
You should show how the students use their results to test the hypothesis.		
You do not need to write about safety precautions.		
Tou do not need to write about safety precadions.	[6 marks]	
		6
END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/Jun20/8464/C/1F