

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

Foundation Tier Paper 1

Thursday 17 May 2018

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
TOTAL			

IB/G/Jun18/8462/1F

0 2	The halogens are elements in Group 7.	Do not write outside the box
02.1	Bromine is in Group 7.	
	Give the number of electrons in the outer shell of a bromine atom. [1 mark]	
02.2	Bromine reacts with hydrogen. The gas hydrogen bromide is produced. What is the structure of hydrogen bromide? Tick one box.	
	Giant covalent Ionic lattice Metallic structure Small molecule	
02.3	What is the formula for fluorine gas? [1 mark] Tick one box.	

A student mixes solutions of halogens with solutions of their salts.

 Table 1 shows the student's observations.

Table 1

	Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)
Chlorine (colourless)		Solution turns orange	Solution turns brown
Bromine (orange)	No change		Solution turns brown
lodine (brown)	No change	No change	

0 2. **4** Explain how the reactivity of the halogens changes going down Group 7.

Use the results in Table 1.

[3 marks]

Question 2 continues on the next page

	A company uses chlorine to produce titanium chloride from titanium dioxide.	Do not write outside the box
02.5	What is the relative formula mass (M_r) of titanium dioxide, TiO ₂ ?	
	Relative atomic masses (A_r): O = 16 Ti = 48 [1 mark]	
	Tick one box.	
	64	
	80	
	128	
	768	
02.6	The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.	
	However, the company finds that 500 g of titanium dioxide only produces 900 g of titanium chloride.	
	Calculate the percentage yield. [2 marks]	
	Percentage yield =%	
		9

0 3	This question is abo	out the structure of the atom.			Do not write outside the box	
0 3.1	Complete the senter	nces.				
	Choose answers fro	m the box.				
	Each word may be used once, more than once, or not at all. [5 marks]					
	electro	n ion	neutron			
		nucleus proton				
	The centre of the at	om is the				
	The two types of pa	rticle in the centre of the atom	are the protor	1		
	and the					
	James Chadwick pr	oved the existence of the				
	Niels Bohr suggeste	ed particles orbit the centre of	the atom. This	s type of particle		
	is the					
	The two types of pa	rticle with the same mass are	the neutron			
	and the	<u>.</u> .				
	Table 2 shows infor	mation about two isotopes of	element X .			
	Table 2					
		Mass number	Percenta	ge (%) abundance		
	Isotope 1	63		70		
	Isotope 2	65		30		

0 3.2	Calculate the relative atomic mass (A_r) of element X using the equation:	Do not writ outside the box
A _r =	(mass number × percentage) of isotope 1 + (mass number × percentage) of isotope 2 100	
	Use Table 2.	
	Give your answer to 1 decimal place.	
	[2 marks]	
	A _r =	
03.3	Suggest the identity of element X .	
	Use the periodic table. [1 mark]	
	Element X is	
03.4	The radius of an atom of element X is 1.2×10^{-10} m	
	The radius of the centre of the atom is $\frac{1}{10000}$ the radius of the atom.	
	Calculate the radius of the centre of an atom of element \mathbf{X} .	
	Give your answer in standard form.	
	[2 marks]	
	Radius =m	10

IB/G/Jun18/8462/1F

0 4. **3** Which of the lines on **Figure 6** show a positive correlation between the volume of gas collected and time?

of gas

Do not write

[1 mark]

Question 4 continues on the next page

0 4 . 5 The teacher demonstrates the electrolysis of:

- molten zinc chloride
- potassium bromide solution.

Complete **Table 3** to predict the products.

Choose answers from the box.

[4 marks]

Do not write outside the box

с	hlorine	bromine	hydrogen	oxygen	potassium	zinc

Table 3

Substance electrolysed	Product at cathode (negative electrode)	Product at anode (positive electrode)
Molten zinc chloride		
Potassium bromide solution		

Turn over for the next question

8

0 5 A student investigated the mass of copper oxide produced by heating copper carbonate.

This is the method used.

- 1. Weigh an empty test tube.
- 2. Weigh 2.00 g of copper carbonate into the test tube.
- 3. Heat the copper carbonate until there appears to be no further change.
- 4. Re-weigh the test tube and copper oxide produced.
- 5. Subtract the mass of the empty tube to find the mass of copper oxide.
- 6. Repeat steps 1–5 twice.
- 7. Repeat steps 1–6 with different masses of copper carbonate.

Table 4 shows the student's results.

Table 4

Mass of copper	Mass of copper oxide in g					
carbonate in g	Trial 1	Trial 2	Trial 3	Mean		
2.00	1.29	1.27	1.31	1.29		
4.00	2.89	2.57	2.59	2.58		
6.00	3.85	3.90	3.87	3.87		
8.00	5.12	5.15	5.09	Х		
10.00	6.42	6.45	6.45	6.44		

The equation for the reaction is:

 $CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$

Complete the sentence.

The state symbol shows carbon dioxide is a

0 5

1

[1 mark]

Why do the contents of the test tube lose mass in the investigation?	[1 mark]	Do not write outside the box
Calculate the mean mass X in Table 4 .	[1 mark]	
X =	g	
One of the results in Table 4 is anomalous.		
Which result is anomalous?	[1 mark]	
Mass of copper carbonateg Trial		
is complete.	[2 marks]	
	Calculate the mean mass X in Table 4. X = One of the results in Table 4 is anomalous. Which result is anomalous? Mass of copper carbonateg Trial	[1 mark] Calculate the mean mass X in Table 4. [1 mark] X =g One of the results in Table 4 is anomalous. Which result is anomalous? [1 mark] Mass of copper carbonateg Trial Suggest how the investigation could be improved to make sure the reaction is complete.

Do not write outside the Another student repeated the investigation using magnesium carbonate instead of box copper carbonate. The word equation for the reaction is: magnesium carbonate \rightarrow magnesium oxide + carbon dioxide Figure 8 shows the results of the investigation. Figure 8 6 × 5 4 Mass of magnesium oxide in g 3 × 2 ж 1 0 2 Ó 4 6 8 10 12 Mass of magnesium carbonate in g

0 5.6	Draw a line of best fit on Figure 8. [1 mark]	Do not write outside the box
0 5.7	Determine the mass of magnesium oxide produced by 8.4 g of magnesium carbonate. Use Figure 8 .	
	[1 mark]	
	Mass =g	
0 5.8	Calculate the mass of magnesium oxide produced when 168 g of magnesium carbonate is heated.	
	Use your answer to Question 05.7 [2 marks]	
	Mass of magnesium oxide produced =g	
	Turn over for the next question	10

06					/een Do not writ outside the box		
	This is the method used.						
	1. Measure 50 cm ³ of the copper sulfate solution into a polystyrene cup.						
	2. R	ecord the starting temperature	e of the copper	sulfate solution.			
	3. Add the metal and stir the solution.						
	4. R	ecord the highest temperature	e the mixture re	aches.			
	5. C	alculate the temperature incre	ease for the rea	ction.			
	6. R	epeat steps 1-5 with different	metals.				
06.1		one line from each type of va vestigation.	ariable to the na		marks]		
		Type of variable		Name of variable in the investigation			
				Concentration of solution			
]	Particle size of solid			
		Dependent variable		L			
				Temperature change			
]				
		Independent variable		Type of metal			
				Volume of solution			

0 6.4	The student concluded that the reactions between the metals and copper sulfate solution are endothermic.	Do not write outside the box
	Give one reason why this conclusion is not correct. [1 mark]	
06.5	The temperature increase depends on the reactivity of the metal.	
	Write the metals magnesium, nickel and zinc in order of reactivity.	
	Use Table 5. [1 mark]	
	Most reactive	
	Least reactive	
06.6	Y is an unknown metal.	
	Describe a method to find the position of Y in the reactivity series in Question 06.5 [3 marks]	

IB/G/Jun18/8462/1F

0 7	This question is about elements in Group 1.	Do not write outside the box
	A teacher burns sodium in oxygen.	
07.1	Complete the word equation for the reaction. [1 mark]	
	sodium + oxygen →	
0 7.2	What is the name of this type of reaction? [1 mark] Tick one box.	
	Decomposition	
	Electrolysis	
	Oxidation	
	Precipitation	
07.3	The teacher dissolves the product of the reaction in water and adds universal indicator. The universal indicator turns purple. What is the pH value of the solution?	
	Tick one box.	
	1 4 7 13	

0 7.4	The solution contains a substance with the formula NaOH	Do not write outside the box
	Give the name of the substance. [1 mark]	
0 7.5	All alkalis contain the same ion.	
	What is the formula of this ion? [1 mark]	
	Tick one box.	
	H ⁺	
	Na⁺	
	OH⁻	
	O ²⁻	
0 7.6	A solution of NaOH had a concentration of 40 g/dm ³	
	What mass of NaOH would there be in 250 cm ³ of the solution? [2 marks]	
	Mass = g	

0 7.7

The melting points of the elements in Group 1 show a trend.

 Table 6 shows the atomic numbers and melting points of the Group 1 elements.

Table 6

Element	Atomic number	Melting point in °C
Lithium	3	181
Sodium	11	98
Potassium	19	63
Rubidium	37	Х
Caesium	55	29

Plot the data from **Table 6** on **Figure 11**.

[2 marks]

0 8	Soluble salts are formed by reacting metal oxides with acids.	Do not write outside the box
08.1	Give one other type of substance that can react with an acid to form a soluble salt. [1 mark]	
08.2	Calcium nitrate contains the ions Ca ²⁺ and NO ₃ ⁻ Give the formula of calcium nitrate. [1 mark]	
08.3	Describe a method to make pure, dry crystals of magnesium sulfate from a metal oxide and a dilute acid. [6 marks]	

09	This question is about metals and metal compounds.	Do not write outside the box
09.1	Iron pyrites is an ionic compound.	
	Figure 12 shows a structure for iron pyrites.	
	Figure 12	
	Key Fe S	
	Determine the formula of iron pyrites.	
	Use Figure 12. [1 mark]	
09.2	An atom of iron is represented as ${}^{56}_{26}$ Fe Give the number of protons, neutrons and electrons in this atom of iron. [3 marks] Number of protons Number of neutrons Number of electrons	
09.3	Iron is a transition metal. Sodium is a Group 1 metal. Give two differences between the properties of iron and sodium.	
	[2 marks]	
	2	

	Nickel is extracted from nickel oxide by reduction with carbon.	
09.4	Explain why carbon can be used to extract nickel from nickel oxide.	
		[2 marks]
09.5	An equation for the reaction is:	
	NiO + C → Ni + CO	
	Calculate the percentage atom economy for the reaction to produce nickel.	
	Relative atomic masses (A_r): C = 12 Ni = 59	
	Relative formula mass (M_r): NiO = 75	
	Give your answer to 3 significant figures.	
		[3 marks]
	Percentage atom economy =	%
	т	urn over ►

	Turn over ►	
	Question 10 continues on the next page	
10.3	Why can alkaline batteries not be recharged? [1 mark]	
1 0 . 2	Why do alkaline batteries eventually stop working? [1 mark]	
	Alkaline batteries are non-rechargeable.	outside the box
	Alkaline batteries are non-rechargeable	Do not writ outside the

	Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars.					
10.4	Complete the balanced equation for the overall reaction in a hydrogen fuel cell. [2 marks]					
	H ₂ +	→	H ₂ O			
1 0.5	Table 7 shows data about differer	nt ways to power electric	cars.			
		Table 7				
		Hydrogen fuel cell	Rechargeable lithium-ion battery			
	Time taken to refuel or recharge in minutes	5	30			
	Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240			
	Distance travelled per unit of energy in km	22	66			
	Cost of refuelling or recharging in $\mbox{\boldmath \pounds}$	50	3			
	Minimum cost of car in £	60 000	18 000			
	Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars. Use Table 7 and your own knowledge. [6 marks]					
			IB/G/Jun18/8462/1F			

	Do not write outside the box
	11
END OF QUESTIONS	

Copyright © 2018 AQA and its licensors. All rights reserved.

