

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

Higher Tier Paper 1

Thursday 17 May 2018

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Η

		1
0 1	Soluble salts are formed by reacting metal oxides with acids.	Do not v outside box
01.1	Give one other type of substance that can react with an acid to form a soluble salt. [1 mark]	
0 1 . 2	Calcium nitrate contains the ions Ca^{2+} and NO_3^{-}	
	Give the formula of calcium nitrate. [1 mark]	
0 1.3	Describe a method to make pure, dry crystals of magnesium sulfate from a metal	
	oxide and a dilute acid. [6 marks]	

0 2	This question is about metals and metal compounds.	Do not write outside the box
02.1	Iron pyrites is an ionic compound.	
	Figure 1 shows a structure for iron pyrites.	
	Figure 1	
	Key Fe S	
	Determine the formula of iron pyrites.	
	Use Figure 1. [1 mark]	
02.2	An atom of iron is represented as ${}^{56}_{26}$ Fe Give the number of protons, neutrons and electrons in this atom of iron. [3 marks] Number of protons Number of neutrons Number of electrons Iron is a transition metal.	
	Sodium is a Group 1 metal.	
	Give two differences between the properties of iron and sodium. [2 marks]	
	1	
	2	

	Nickel is extracted from nickel oxide by reduction with carbon.		Do not write outside the box
02.4	Explain why carbon can be used to extract nickel from nickel oxide.	[2 marks]	
02.5	An equation for the reaction is:		
	NiO + C \rightarrow Ni + CO		
	Calculate the percentage atom economy for the reaction to produce nickel.		
	Relative atomic masses (A_r): C = 12 Ni = 59		
	Relative formula mass (M_r): NiO = 75		
	Give your answer to 3 significant figures.	[3 marks]	
		[o marko]	
	Percentage atom economy =	%	
			11
	Т	urn over ►	

	Alkaline batteries are non-rechargeable.	Do not write outside the box
03.2	Why do alkaline batteries eventually stop working? [1 mark]	
0 3.3	Why can alkaline batteries not be recharged?	
	[1 mark]	
	Question 3 continues on the next page	
	Turn over ►	

			[2 marks
	H ₂ +	→	H2O
3.5	Table 1 shows data about differer	nt ways to power electric	cars.
		Table 1	
		Hydrogen fuel cell	Rechargeable lithium-ion battery
	Time taken to refuel or recharge in minutes	5	30
	Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240
	Distance travelled per unit of energy in km	22	66
	Cost of refuelling or recharging in $\ensuremath{\mathfrak{L}}$	50	3
	Minimum cost of car in £	60 000	18 000
	Evaluate the use of hydrogen fuel batteries to power electric cars. Use Table 1 and your own knowle		
			[6 marks

0 4	Figure 3 represents different models of the atom.	Do not write outside the box
	Figure 3 A B C D E	
04.1	Which diagram shows the plum pudding model of the atom? [1 mark] Tick one box. A B C D E	
04.2	Which diagram shows the model of the atom developed from the alpha particle scattering experiment? Image: Image	
04.3	Which diagram shows the model of the atom resulting from Bohr's work? Imark] Tick one box. A B C D E	

04.4	Define the mass number of an atom. [1 mark]	Do not wr outside th box
04.5	Element X has two isotopes. Their mass numbers are 69 and 71 The percentage abundance of each isotope is: • 60% of ⁶⁹ X • 40% of ⁷¹ X Estimate the relative atomic mass of element X. [1 mark]	
	Tick one box.	
	< 69.5	
	Between 69.5 and 70.0	
	Between 70.0 and 70.5	
	> 70.5	
0 4 . 6	Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding. [3 marks]	
		8

A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.

Table 2 shows the student's results.

0 5.2	The student concluded that the reactions between the metals and copper sulfate solution are endothermic.	Do not write outside the box
	Give one reason why this conclusion is not correct. [1 mark]	
0 5.3	The temperature change depends on the reactivity of the metal.	
	The student's results are used to place copper, iron, magnesium and zinc in order of their reactivity.	
	Describe a method to find the position of an unknown metal in this reactivity series.	
	Your method should give valid results. [4 marks]	
	Question 5 continues on the next page	
	Turn over ►	

IB/G/Jun18/8462/1H

Do not write
outside the box

06.5	The number of moles of each gas produced at the electrodes is the same.	Do not write outside the box
	No gas escapes from the apparatus.	
	Suggest one reason for the difference in volume of each gas collected.	
	[1 mark]	
06.6	Calculate the amount in moles of chlorine collected after 20 minutes.	
	Use Figure 8.	
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm ³	
	Give your answer in standard form.	
	[3 marks]	
	Moles of chlorine =mol	
		14
	Turn over for the next question	

0 7	This question is about Group 7 elements.		Do not wr outside th box
	Chlorine is more reactive than iodine.		
07.1	Name the products formed when chlorine solution reacts with potassium iodide solution.	[1 mark]	
0 7.2	Explain why chlorine is more reactive than iodine.	[3 marks]	
0 7.3	Chlorine reacts with hydrogen to form hydrogen chloride.		
	Explain why hydrogen chloride is a gas at room temperature.		
	Answer in terms of structure and bonding.	[3 marks]	

0 7 . 4

11

Figure 9 shows the displayed formulae for the reaction of bromine with methane.

Bromine reacts with methane in sunlight.

Do not write outside the box

0 8	Titanium is a transiti	on metal.	Do not write outside the box
	Titanium is extracted	from titanium dioxide in a two stage industrial process.	
	Stage 1	$TiO_2 + 2C + 2CI_2 \rightarrow TiCI_4 + 2CO$	
	Stage 2	TiCl₄ + 4 Na → Ti + 4 NaCl	
08.1	Suggest one hazard	associated with Stage 1. [1 mark]	
08.2		away from the reaction in Stage 2 .	
	Give one reason wh	y it would be hazardous if water came into contact with sodium. [1 mark]	
0 8.3	Suggest why the rea not in air.	action in Stage 2 is carried out in an atmosphere of argon and [2 marks]	

0 8.4	Titanium chloride is a liquid at room temperature.		Do not write outside the box
	Explain why you would not expect titanium chloride to be a liquid at room temperature.	3 marks]	
	In Stage 2, sodium displaces titanium from titanium chloride.		
0 8.5	Sodium atoms are oxidised to sodium ions in this reaction.		
	Why is this an oxidation reaction?	[1 mark]	
0 8.6		[1 mark]	
	Na →+		

0 8.7	In Stage 2 , 40 kg of titanium chloride was added to 20 kg of sodium.	Do not write outside the box			
	The equation for the reaction is:				
	TiCl₄ + 4 Na → Ti + 4 NaCl				
	Relative atomic masses (A_r): Na = 23 Cl = 35.5 Ti = 48				
	Explain why titanium chloride is the limiting reactant.				
	You must show your working. [4 marks]				
08.8	For a Stage 2 reaction the percentage yield was 92.3%				
	The theoretical maximum mass of titanium produced in this batch was 13.5 kg.				
	Calculate the actual mass of titanium produced.				
	[2 marks]				
	Mass of titanium = kg				
		15			
		1			

09	This question is about acids and alkalis.	Do not write outside the box
09.1	Dilute hydrochloric acid is a strong acid. Explain why an acid can be described as both strong and dilute.	
	[2 marks]	
09.2	A 1.0×10^{-3} mol/dm ³ solution of hydrochloric acid has a pH of 3.0	
	What is the pH of a 1.0×10^{-5} mol/dm ³ solution of hydrochloric acid? [1 mark] pH =	
	Question 9 continues on the next page	

Do not write outside the box

A student titrated 25.0 cm^3 portions of dilute sulfuric acid with a 0.105 mol/dm³ sodium hydroxide solution.

Table 4 shows the student's results.

Table 4

	Titration	Titration	Titration	Titration	Titration
	1	2	3	4	5
Volume of sodium hydroxide solution in cm ³	23.50	21.10	22.10	22.15	22.15

The equation for the reaction is:

 $2 \text{ NaOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$

Calculate the concentration of the sulfuric acid in mol/dm³

Use only the student's concordant results.

Concordant results are those within 0.10 cm^3 of each other.

[5 marks]

Concentration of sulfuric acid = _____ mol/dm³

09.4	Explain why the student should use a pipette to measure the dilute sulfuric acid and a burette to measure the sodium hydroxide solution.	Do not write outside the box
	[2 marks]	
09.5	Calculate the mass of sodium hydroxide in 30.0 cm ³ of a 0.105 mol/dm ³ solution. Relative formula mass (M_r): NaOH = 40	
	[2 marks]	
	Mass of sodium hydroxide = g	
		12
	END OF QUESTIONS	

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

