AQA

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE **CHEMISTRY**

Higher Tier Paper 1

Thursday 16 May 2019

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Morning

Do not write outside the box

Answer **all** questions in the spaces provided.

0 1

This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

Figure 1 shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	н						
Period 2	Li	Ве	В	С	N	0	F
Period 3	Na	Mg	Al	Si	Р	S	Cl
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	*

Figure 1

0 1 . 1

The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127

Why did Mendeleev reverse the order of these two elements?

[1 mark]

0 1.2	Mendeleev left spaces marked with an asterisk *	
	He left these spaces because he thought missing elements belonged	there.
	Why did Mendeleev's periodic table become more widely accepted the	nan previous
	versions?	[3 marks]
0 1.3	Mendeleev arranged the elements in order of their atomic weight.	
	What is the modern name for atomic weight?	[1 mark]
	Tick (✓) one box.	[1 mark]
	Atomic number	
	Mass number	
	Relative atomic mass	
	Relative formula mass	
0 1.4	Complete the sentence.	
		[1 mark]
	In the modern periodic table, the elements are arranged in order of	

Turn over ►

Do not write outside the box

			Do not write outside the
	Chlorine, iodine and astatine are in Group 7 of the modern periodic table.		box
0 1.5	Astatine (At) is below iodine in Group 7.		
	Predict:		
	 the formula of an astatine molecule the state of astatine at room temperature.	[2 marks]	
	Formula of astatine molecule		
	State at room temperature		
0 1.6	Sodium is in Group 1 of the modern periodic table.		
	Describe what you would see when sodium reacts with chlorine.	[2 marks]	
			10

0 2	This question is about acids and alkalis.	Do not write outside the box
02.1	Which ion do all acids produce in aqueous solution? [1 mark]	
	Tick (✓) one box.	
	H⁺	
	H⁻	
	O ²⁻	
	OH⁻	
02.2	Calcium hydroxide solution reacts with an acid to form calcium chloride.	
	Complete the word equation for the reaction. [2 marks]	
calcium hydr	oxide + acid \rightarrow calcium chloride +	
	Question 2 continues on the next page	

Turn over 🕨

02.5	The higher the concentration of a sample of dilute sulfuric acid, the greater the volume	Do not write outside the box
	of sodium hydroxide needed to neutralise the acid.	
	The student tested two samples of dilute sulfuric acid, P and Q .	
	Describe how the student could use titrations to find which sample, P or Q , is more concentrated.	
	[6 marks]	
		11
		[]

 Table 1 shows some properties of materials.

The materials could be used to make badminton racket frames.

Table '	1
---------	---

Material	Density in g/cm ³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

Use Table 1.

[4 marks]

Turn over ►

IB/G/Jun19/8462/1H

Zinc oxide can be produced as nanoparticles and as fine particles. ① 3.3 A nanoparticle of zinc oxide is a cube of side 82 nm Figure 5 Figure 5 Calculate the surface area of a nanoparticle of zinc oxide. Give your answer in standard form. [3 marks] Surface area = nm ² O 3.4 Some suncreams contain zinc oxide as nanoparticles or as fine particles. Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark] [1 mark]			Do not write
Figure 5 represents a nanoparticle of zinc oxide. Figure 5 Give your answer in standard form. [3 marks] Surface area =nm ² Surface area =nm ² [1 mark] [1 mark] [1 mark] [1 mark]		Zinc oxide can be produced as nanoparticles and as fine particles.	outside the box
Figure 5 \$2 nm \$Calculate the surface area of a nanoparticle of zinc oxide. Give your answer in standard form. [3 marks] Surface area = \$Surface area =	03.3	A nanoparticle of zinc oxide is a cube of side 82 nm	
82 nm Image: standard form. [3 marks] Surface area =nm² Image: standard form. [3 marks] Image: standard form. [3 marks] Image: standard form. [3 marks] Image: standard form. Image: standard form. [3 marks] Image: standard form. Image: standard		Figure 5 represents a nanoparticle of zinc oxide.	
⁸² nm ⁶ a nanoparticle of zinc oxide. ^{[3} marks] ^{[1} mark]		Figuro 5	
Calculate the surface area of a nanoparticle of zinc oxide. Give your answer in standard form. [3 marks]			
Give your answer in standard form. [3 marks] [3 marks] [82 nm	
[3 marks]		Calculate the surface area of a nanoparticle of zinc oxide.	
0 3.4 Some suncreams contain zinc oxide as nanoparticles or as fine particles. Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark]			
0 3.4 Some suncreams contain zinc oxide as nanoparticles or as fine particles. Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark]			
Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark]		Surface area = nm ²	
suncreams. [1 mark]	0 3.4	Some suncreams contain zinc oxide as nanoparticles or as fine particles.	
[1 mark]			
 10			
10			
10			
			10

0 4	This question is	s about atomic struc	ture.			Do not wr outside tl box
04.1	Atoms contain	subatomic particles.				
	Table 2 shows	properties of two su	ubatomic particles			
	Complete Tabl	e 2.			[2 marks]	
			Table 2		[]	
		Name of particle	Relative mass	Relative charge		
		neutron				
				+1		
	An element X h	nas two isotopes.				
	The isotopes h	ave different mass r	numbers.			
04.2	Define mass n	umber.			[1 mark]	
04.3	Why is the mas	ss number different i	in the two isotope	s?	[1 mark]	
		Question 4 continu	ues on the next p	bage		

04.4	The model of the atom changed as new evidence was discovered.	Do not write outside the box
	The plum pudding model suggested that the atom was a ball of positive charge with electrons embedded in it.	
	Evidence from the alpha particle scattering experiment led to a change in the model of the atom from the plum pudding model.	
	Explain how. [4 marks]	
		8

Г

0 5	This question is about ammonia, NH_3	Do not write outside the box
0 5.1	Complete the dot and cross diagram for the ammonia molecule shown in Figure 6.	
	Show only the electrons in the outer shell of each atom. [2 marks]	
	Figure 6	
	H N H H	
0 5.2	Give one limitation of using a dot and cross diagram to represent an ammonia molecule.	
	[1 mark]	
0 5.3	Explain why ammonia has a low boiling point. You should refer to structure and bonding in your answer.	
	[3 marks]	

0 5.5	Calculate the overall energy change for the reaction.	Do not write outside the box
	Use Figure 7 and Table 3. [3 marks]	
	Overall energy change =kJ	
0 5 6	Explain why the reaction between ammonia and oxygen is exothermic.	
	Use values from your calculation in Question 05.5 [2 marks]	
	Question 5 continues on the next page	

Turn over ►

IB/G/Jun19/8462/1H

box

18

Table 4 shows the student's results.	
	Table 4

F	
Electrode X	Voltage of cell in volts
cobalt	+0.62
copper	0.00
magnesium	+2.71
nickel	+0.59
silver	-0.46
tin	+0.48

0 6.2

Write the six metals used for electrode \boldsymbol{X} in order of reactivity.

Use Table 4.

Most reactive

Justify your order of reactivity.

		I	4 marks]

Least reactive

Justification

This question is about electro	olysis.		
Aluminium is produced by ele cryolite.	ectrolysing a molt	en mixture of all	uminium oxide and
Explain why a mixture is used	d as the electroly	te instead of usi	ng only
aluminium oxide.			[2 marks]
What happens at the negative	e electrode durin	g the production	of aluminium?
			[1 mark]
Tick (✓) one box.			[1 mark]
	ons.		[1 mark]
Aluminium atoms gain electro			[1 mark]
Aluminium atoms gain electro			[1 mark]
Aluminium atoms gain electro Aluminium atoms lose electro	ons.		[1 mark]
Aluminium atoms gain electro Aluminium atoms lose electro Aluminium ions gain electron	ons. S.		[1 mark]
Aluminium atoms gain electro Aluminium atoms lose electro Aluminium ions gain electron	ons. S.		[1 mark]
Aluminium atoms gain electro Aluminium atoms lose electro Aluminium ions gain electron Aluminium ions lose electron	ons. s. s.		[1 mark]
Tick (✓) one box. Aluminium atoms gain electro Aluminium atoms lose electro Aluminium ions gain electron Aluminium ions lose electron Oxygen is produced at the po Complete the balanced half-e	ons. s. s. ositive electrode.		

0 7

07.

0 7.2

0 7

3

.

1

07 . 5 The overall equation for the electrolysis of aluminium oxide is:	
$2Al_2O_3\rightarrow4Al+3O_2$ Calculate the mass of oxygen produced when 2000 kg of aluminium oxide is completely electrolysed.	
Relative atomic masses (A_r) : O = 16 Al = 27 [4 ma	arks]
Mass of oxygen =	_ kg

21

	Sodium metal and chlorine gas are produced by the electrolysis of molten sodium chloride.	Do not write outside the box
0 7.6	Explain why sodium chloride solution cannot be used as the electrolyte to produce sodium metal.	
	[2 marks]	
0 7.7	Calculate the volume of 150 kg of chlorine gas at room temperature and pressure.	
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm ³	
	Relative formula mass (M_r): $Cl_2 = 71$ [2 marks]	
	Volume = dm ³	
		16

	Turn over ►	
	Question 8 continues on the next page	
08.2	Explain why the excess hydrogen must be burned off. [2 marks]	
	[1 mark]	
0 8.1	Suggest one reason why step 8 is needed.	Do not write outside the box

 Table 5 shows the teacher's results.

Table 5

	Mass in g
Tube A empty	105.72
Tube A and oxide of copper before heating	115.47
Tube A and contents after 2 minutes	114.62
Tube A and contents after 4 minutes	114.38
Tube A and contents after 6 minutes	114.38
Tube B and contents at start	120.93
Tube B and contents at end	123.38

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

copper oxide + hydrogen \rightarrow copper + water

Do not write outside the

box

08.3	Determine the mass of copper and the mass of water produced in this experiment.
	Use Table 5. [2 marks]
	Mass of copper = g
	Mass of water = g
0 8.4	The teacher repeated the experiment with a different sample of the oxide of copper.
	The teacher found that the oxide of copper produced 2.54 g of copper and 0.72 g of water.
	Two possible equations for the reaction are:
	Equation 1: $Cu_2O + H_2 \rightarrow 2Cu + H_2O$
	Equation 2: CuO + H ₂ \rightarrow Cu + H ₂ O
	Determine which is the correct equation for the reaction in the teacher's experiment.
	Relative atomic masses (A_r): H = 1 O = 16 Cu = 63.5 [3 marks]
	Turn over for the next question

Turn over ►

8

Do not write outside the box

		Do not write outside the
09	A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.	box
	This is the method used.	
	1. Measure 25.0 cm ³ potassium hydroxide solution into a polystyrene cup.	
	2. Record the temperature of the solution.	
	3. Add 2.0 cm ³ dilute sulfuric acid.	
	4. Stir the solution.	
	5. Record the temperature of the solution.	
	6. Repeat steps 3 to 5 until a total of 20.0 cm ³ dilute sulfuric acid has been added.	
09.1	Suggest why the student used a polystyrene cup rather than a glass beaker for the	
	reaction. [2 marks]	
	Question 9 continues on the next page	

Do not write outside the box

Table 6 shows some of the student's results.

Volume of dilute sulfuric acid added in cm ³	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

Figure 11 shows some of the data from the investigation.

Figure 11

09.2	Complete Figure 11:		Do not write outside the box
<u> </u>	 plot the data from Table 6 draw a line of best fit through these points extend the lines of best fit until they cross. 		
		4 marks]	
09.3	Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm ³ of the potassium hydroxide solution.		
	Use Figure 11.	[1 mark]	
	Volume of dilute sulfuric acid to react completely =	cm ³	
09.4	Determine the overall temperature change when the reaction is complete.		
	Use Figure 11.	[1 mark]	
	Overall temperature change =	•C	
	Question 9 continues on the next page		

IB/G/Jun19/8462/1H

		Do not write	
09.5	The student repeated the investigation.	outside the box	
	The student used solutions that had different concentrations from the first investigation.		
	The student found that 15.5 cm ³ of 0.500 mol/dm ³ dilute sulfuric acid completely reacted with 25.0 cm ³ of potassium hydroxide solution.		
	The equation for the reaction is:		
	$2 \text{ KOH } + \text{H}_2 \text{SO}_4 \ \rightarrow \ \text{K}_2 \text{SO}_4 \ + \ 2 \text{H}_2 \text{O}$		
Calculate the concentration of the potassium hydroxide solution in mol/dm ³ and in g/dm ³			
	Relative atomic masses (A_r): H = 1 O = 16 K = 39 [6 marks]		
	Concentration in mol/dm ³ = mol/dm ³		
	Concentration in $g/dm^3 = $ g/dm ³		
	END OF QUESTIONS	14	
Copyright inform			
For confidentiality purposes acknowledgements of third-party copyright material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.			
Copyright © 2019 A	QA and its licensors. All rights reserved.		
		-	

