

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 3

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend 70 minutes on Section A and 50 minutes on Section B.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
Section B		
TOTAL		

	Section A
	Answer all questions in this section.
0 1	This question is about ethanedioic acid (HOOCCOOH) and the ethanedioate ion (-OOCCOO-).
0 1.1	Ethanedioic acid reacts with propane-1,3-diol (HOCH $_2$ CH $_2$ CH $_2$ OH) to form a polyester.
	Draw the repeating unit of this polyester. [2 marks]
01.2	Explain why polyesters are biodegradable but polyalkenes are not biodegradable. [2 marks]

01.3 Sodium ethanedioate is used to find the concentration of solutions of potassium manganate(VII) by titration. The equation for this reaction is

 $2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_2\text{O}_4^{2-} \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 10 \text{ CO}_2$

A standard solution is made by dissolving 162 mg of $Na_2C_2O_4$ ($M_r = 134.0$) in water and making up to 250 cm³ in a volumetric flask.

25.0 cm³ of this solution and an excess of sulfuric acid are added to a conical flask. The mixture is warmed and titrated with potassium manganate(VII) solution. The titration is repeated until concordant results are obtained. The mean titre is 23.85 cm³

Calculate the concentration, in mol dm⁻³, of the potassium manganate(VII) solution. [4 marks]

Concentration

Do not write outside the

box

0 1.4	Figure 1 shows the 25.0 cm ³ pipette used to measure the sodium ethanedioate solution.	Do not write outside the box
	Figure 1	
	Graduation mark	
	On Figure 1 , draw the meniscus of the solution when the pipette is ready to transfer 25.0 cm ³ of the sodium ethanedioate solution. [1 mark]	
0 1.5	Potassium manganate(VII) is oxidising and harmful. Sodium ethanedioate is toxic.	
	 Suggest safety precautions, other than eye protection, that should be taken when: filling the burette with potassium manganate(VII) solution dissolving the solid sodium ethanedioate in water. 	
	Filling the burette	
	Dissolving the solid	
0 1.6	State the colour change seen at the end point of each titration. [1 mark]	

] Do noi
0 1.8	When $Na_2C_2O_4(aq)$ is added to a solution containing $[Fe(H_2O)_6]^{3+}$ ions, a reaction occurs in which all six water ligands are replaced by ethanedioate ions.	outsia
	Explain why the replacement of the water ligands by ethanedioate ions is favourable. In your answer refer to:	
	 the enthalpy and entropy changes for the reaction how the enthalpy and entropy changes influence the free-energy change for the reaction. 	
	[6 marks]	

	Do not write outside the box
	20
Turn over for the next question	
Turn over ►	

	Turn over for the next question	
	Turn over for the next question	
		4
02.3	State why each amino acid has a different R _f value.	[1 mark]
	The amino acids cannot be seen as they move during the experiment. State how the amino acids can be made visible at the end of the experiment.	^{box} [1 mark]

		Do not write outside the
0 3	This question is about ketones.	box
0 3.1	Solution ${f X}$ reacts with liquid ketones to form a crystalline solid.	
	This reaction can be used to identify a ketone if the crystalline solid is separated, purified by recrystallisation, and the melting point determined.	
	Describe how the crystalline solid is separated and purified.	
	[5 marks]	

0 3 2	Propanone (CH ₃ COCH ₃) reacts with the weak acid HCN to form a hydroxynitrile.	Do not write outside the box
0 5.2	This hydroxynitrile is usually made by reaction of propanone with KCN followed by	
	dilute acid, instead of with HCN	
	State the hazard associated with the use of KCN	
	Suggest a reason, other than safety, why KCN is used instead of HCN. [2 marks]	
	Hazard	
	Why KCN is used	-
		_
03.3	Outline the mechanism for the reaction of propanone with KCN followed by dilute acid. [4 marks]	
		11
	Turn over for the next question	

0 4	This question is about Group 7 chemistry.	Do not write outside the box
04.1	Give an equation for the reaction of solid sodium bromide with concentrated sulfuric acid to form bromine.	
	State one observation made during this reaction.	
	Equation [2 marks]	
	Observation	
04.2	A solution that is thought to contain chloride ions and iodide ions is tested.	
	 Dilute nitric acid is added to the solution. Aqueous silver nitrate is added to the solution. 	
	 3. A pale yellow precipitate forms. 4. Excess dilute aqueous ammonia is added to the mixture. 	
	5. Some of the precipitate dissolves and a darker yellow precipitate remains. Give a reason for the use of each reagent.	
	Explain the observations.	
	Give ionic equations for any reactions. [5 marks]	

13

A mixture of methanoic acid and sodium methanoate in aqueous solution acts as an acidic buffer solution.

The equation shows the dissociation of methanoic acid.

 $HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$

Calculate the mass, in g, of sodium methanoate (HCOONa) that must be added to 25.0 cm^3 of 0.100 mol dm⁻³ methanoic acid to produce a buffer solution with pH = 4.05 at 298 K

For methanoic acid, $pK_a = 3.75$ at 298 K

Assume that the volume of the solution remains constant.

[5 marks]

Do not write outside the

box

Mass

g

5

IB/M/Jun21/7405/3

0 6.2	Give one additional reagent that is needed to form any propanoic acid.	[1 mark]	Do not write outside the box
06.3	State two more mistakes in the way the apparatus is set up in Figure 4 .	[2 marks]	
	2		
06.4	State the purpose of the small glass beads in the flask in Figure 4 .	[1 mark]	
	Question 6 continues on the next page		

IB/M/Jun21/7405/3

06.5	5 After correcting the mistakes, the student heats a reaction mixture containing 6. propan-1-ol with an excess of the oxidising agent. The propanoic acid separated from the reaction mixture has a mass of 3.25 g	
	State the name of the technique used to separate the propanoic acid from the remixture.	
	Calculate the percentage yield of propanoic acid.	[4 marks]
	Technique	
	Percentage yield	
	· • • • • • • • • • • • • • • • • • • •	
06.6	State a simple chemical test that distinguishes the propanoic acid from the propan-1-ol.	
	Give one observation for the test with each substance.	[3 marks]
	Test	
	Propanoic acid	
	Propan-1-ol	

13

	Section B	
	Answer all questions in this section.	
•	answer per question is allowed. answer completely fill in the circle alongside the appropriate answer.	
CORRECT M	IETHOD WRONG METHODS 🐼 💿 🚓 🔯	
If you wa	nt to change your answer you must cross out your original answer as sh	own. 💌
lf you wis as showr	sh to return to an answer previously crossed out, ring the answer you nov n.	w wish to select
•	do your working in the blank space around each question but this will no se additional sheets for this working.	ot be marked.
0 7	Which does not involve the absorption of ultraviolet radiation or visib	le light? [1 mark]
	A The blue appearance of copper(II) sulfate solution in daylight.	0
	B The breakdown of ozone in the upper atmosphere.	0
	B The breakdown of ozone in the upper atmosphere.C The ionisation of a molecule in a mass spectrometer.	0
08	C The ionisation of a molecule in a mass spectrometer.	
0 8	 C The ionisation of a molecule in a mass spectrometer. D The reaction between chlorine and methane at room temperature. Which statement about chloride ions is not correct? A They form a white precipitate with silver nitrate solution that is soluble in dilute aqueous ammonia. 	
08	 C The ionisation of a molecule in a mass spectrometer. D The reaction between chlorine and methane at room temperature. Which statement about chloride ions is not correct? They form a white precipitate with silver nitrate solution that is 	[1 mark]
0 8	 C The ionisation of a molecule in a mass spectrometer. D The reaction between chlorine and methane at room temperature. Which statement about chloride ions is not correct? A They form a white precipitate with silver nitrate solution that is soluble in dilute aqueous ammonia. They form an octahedral cobalt(II) complex when aqueous 	[1 mark]

Turn over ►

Do not write outside the 1 2 box Which statement about inorganic ionic compounds is always correct? [1 mark] **A** They dissolve in water to give neutral solutions. \bigcirc **B** They release energy when they melt. \bigcirc **C** They contain metal cations. \bigcirc **D** They form giant structures. \bigcirc 1 3 Which species has a lone pair of electrons on the central atom? [1 mark] A CO₂ \bigcirc B SO₂ \bigcirc C PCl₆⁻ \bigcirc **D** SO₄²⁻ \bigcirc 1 4 In which substance do covalent bonds break when it melts? [1 mark] A hexane \bigcirc B ice \bigcirc **C** iodine \bigcirc D silicon dioxide \bigcirc 1 5 In which molecule are all the atoms in the same plane? [1 mark] A CH₃CHO \bigcirc B CH₃NH₂ \bigcirc $C C_6H_5Cl$ \bigcirc $D C_6H_5CH_3$ \bigcirc

2 1

Turn over ►

1 6	Which molecule has a permanent dipole?			Do not write outside the box
			[1 mark]	
	A BF ₃	0		
	B NH ₃	0		
	C SiCl ₄	0		
	D SO ₃	0		
1 7	Which statement about $(CH_3)_2CHCH_2COOH$ is correct?		[1 mark]	
	A In aqueous solution it reacts with magnesium to form carbon dioxide.	0		
	B It can form hydrogen bonds.	0		
	C It has optical isomers.	0		
	D It has the IUPAC name 2-methylbutanoic acid.	0		
1 8	A mixture of 2 dm ³ of hydrogen and 1 dm ³ of oxygen is at room tempe	erature.		
	Which statement is correct?		[1 mark]	
	A There is no reaction to form water because the molecules do not collide with sufficient energy.	0		
	B There is no reaction to form water because the molecules do not collide with sufficient frequency.	0		
	c The mean velocity of the hydrogen molecules is less than that of the oxygen molecules.	0		
	D The partial pressure of each gas is the same.	0		

Do not write outside the 19 Which statement about the distribution curve of molecular energies in an ideal gas at a given temperature is correct? [1 mark] **A** There are no molecules with zero energy. \bigcirc \bigcirc **B** The curve is symmetrical about the maximum. Changing the temperature has no effect on the position of the С \bigcirc maximum. **D** Most molecules have the mean energy. \bigcirc 2 0 Which statement about the addition of a catalyst to an equilibrium mixture is correct? [1 mark] **A** The activation energy for the reverse reaction increases. \bigcirc **B** The equilibrium constant for the forward reaction increases. \bigcirc **C** The rate of the reverse reaction increases. \bigcirc **D** The enthalpy change for the forward reaction decreases. \bigcirc 2 1 Which equation does **not** show the reduction of a transition metal? [1 mark] A TiCl₄ + 2 Mg \rightarrow Ti + 2 MgCl₂ \bigcirc **B** 2 FeCl₃ + 2 KI \rightarrow 2 FeCl₂ + 2 KCl + I₂ \bigcirc $\textbf{C} \text{ MnO}_2 + 4 \text{ HCl} \rightarrow \text{ MnCl}_2 + \text{ Cl}_2 + 2 \text{ H}_2 \text{O}$ \bigcirc **D** CoO + 4 HCl \rightarrow [CoCl₄]²⁻ + H₂O + 2 H⁺ \bigcirc Turn over for the next question

box

2 5	Which compound n of 1 mol of the com	needs the greatest amount of oxygen for the compl	ete con	nbustion	Do not write outside the box
		pound .		[1 mark]	
	A ethanal		0		
	B ethanol		0		
	C ethane-1,2-diol		0		
	D methanol		0		
2 6	Which compound is acidified potassium	s produced when 1-phenylethanol reacts with dichromate(VI)?		[1 mark]	
	A $C_6H_5CH_2CH_2OH$	I	0		
	B C ₆ H ₅ CH ₂ CHO		0		
	\mathbf{C} C ₆ H ₅ COCH ₃		0		
	D C ₆ H ₅ CH(OH)CH	3	0		
2 7	Which is the correct homologous series	t general formula for non-cyclic compounds in the ?		[1 mark]	
	A alcohols	$C_nH_{2n+2}O$	0		
	B aldehydes	C _n H _{2n+1} O	0		
	C esters	$C_nH_{2n+1}O_2$	0		
	D primary amines	$C_nH_{2n+2}N$	0		
		Turn over for the next question			

Turn over ►

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	
	Copyright information	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2021 AQA and its licensors. All rights reserved.	

