Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2012

Further Mathematics Level 2 Paper 1 Non-Calculator

Tuesday 29 May 2012 1.30 pm to 3.00 pm

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

8360/1

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

For Examiner's Use

Examiner's Initials

Mark

Pages

3

4 - 5

6 - 7

8 - 9

10 - 11

12 - 13

14

TOTAL

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of
$$ax^2+bx+c=0$$
, where $a\neq 0$, are given by $x=\frac{-b\pm\sqrt{(b^2-4ac)}}{2a}$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1
$$f(x) = 2x^2 + 7$$
 for all values of x .

1 (a) What is the value of
$$f(-1)$$
?

1 (b) What is the range of
$$f(x)$$
?

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Work out the matrix AB.

Turn over ▶

3	Work out the greatest integer value of x that satisfies the inequality $3x + 10 < 1$			
		Answer		
4 (a)	Factorise fully	$2x^2 - 2x - 40$		
4 /h)	Contoring fully	Answer	(3 marks)	
4 (b)		$(x+y)^2 + (x+y)(2x+5y)$		
		Answer	(3 marks)	

5	Simplify $(2cd^4)^3$
	Answer
6	Solve the simultaneous equations
	2y = 3x + 4
	2x = -3y - 7
	Do not use trial and improvement.
	Answer

7 The diagram shows a cyclic quadrilateral ABCD.

ADE is a straight line. CE is a tangent to the circle.

Not drawn accurately

Work out the size of angle x .	
$\mathbf{r} =$	degrees (3 marks)

8	A curve has equation $y = x^3 + 5x^2 + 1$
8 (a)	When $x = -1$, show that the value of $\frac{dy}{dx}$ is -7 .
	(2 marks)
8 (b)	Work out the equation of the tangent to the curve $y = x^3 + 5x^2 + 1$ at the point
	where $x = -1$
	where $x = -1$

Turn over for the next question

0 7

Turn over ▶

9	Write this ratio in its simplest form
	$\sqrt{12} : \sqrt{48} : \sqrt{300}$
	Answer: :: :: (3 marks)
	Allower (5 mans)
10	The n^{th} term of the linear sequence 2 7 12 17 is $5n-3$
	A new sequence is formed by squaring each term of the linear sequence and adding 1.
	Prove algebraically that all the terms in the new sequence are multiples of 5.
	(4 marks)

OABC is a kite.

11 (a)	Work out the equation	of AC.
--------	-----------------------	--------

 	 	•••••

Answer	(2 marks)
--------	-----------

11 (b) World	out the coordinates of B.
---------------------	---------------------------

Answer (,)	(6 marks)
------------	---	-----------

12 (a) A graph passes through (0, 0).

The rate of change of y with respect to x is always $\frac{1}{2}$.

Draw the graph of y for values of x from 0 to 4.

(1 mark)

 $\textbf{12 (b)} \qquad \text{A graph passes through } (1,\,2)\,.$

The rate of change of y with respect to x is always 0.

Draw the graph of y for values of x from 0 to 4.

(1 mark)

12 (c)	$y = 2x^3 + ax$, where a is a constant.			
	The value of $\frac{dy}{dx}$ when $x = 2$ is twice the value of $\frac{dy}{dx}$ when $x = -1$			
	Work out the value of a .			

Turn over for the next question

Turn over ▶

13	Simplify $\frac{x^2 + 4x - 12}{x^2 - 25} \div \frac{x + 6}{x^2 - 5x}$
	Answer(5 marks)
14	$x^{\frac{3}{2}} = 8$ where $x > 0$ and $y^{-2} = \frac{25}{4}$ where $y > 0$
	Work out the value of $\frac{x}{y}$.
	$\frac{x}{y} = \dots$ (5 marks)

15 (a) XYZ is a right-angled triangle.

Not drawn accurately

Use triangle XYZ to show that $\sin 60^\circ = \frac{\sqrt{3}}{2}$

(2 marks)

15 (b) Triangle *ABC* has an obtuse angle at *C*.

Not drawn accurately

Given that $\sin A = \frac{1}{4}$, use triangle *ABC* to show that angle $B = 60^{\circ}$

(6 marks)

16	Prove that $\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$
	(3 marks)

END OF QUESTIONS

