Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2015

Further Mathematics

8360/1

Level 2

Paper 1 Non-Calculator

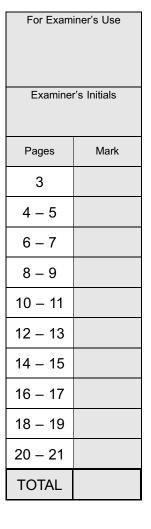
Monday 15 June 2015 9.00 am to 10.30 am

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

Time allowed

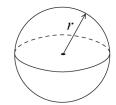

• 1 hour 30 minutes

Instructions

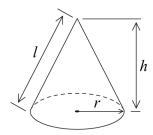
- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

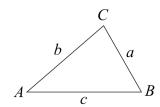


Formulae Sheet


Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$


Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

	Answer all questions in the spaces provided.
1	GH is a straight line.
	The coordinates of G are $(-2, 8)$ The midpoint of GH is $(5, -3)$
	Work out the coordinates of <i>H</i> . [2 marks]
	Answer ()
	Turn over for the next question

Turn over ▶

2 A straight line with equation

y = mx + c

has gradient m and y-intercept c.

Here are the equations of four straight lines, P, Q, R and S.

P
$$2y - 4x = 5$$

Q
$$5y = 2x - 4$$

R
$$2y - 4 = 5x$$

S
$$4y = 5 - 2x$$

2 (a) Circle the line that passes through (7, 2)

[1 mark]

Ρ

Q

R

S

2 (b) Circle the line with gradient $2\frac{1}{2}$

[1 mark]

Ρ

Q

R

S

2 (c) Circle the line with *y*-intercept $2\frac{1}{2}$

[1 mark]

Ρ

Q

R

S

2 (d) Circle the line with a negative gradient.

[1 mark]

Ρ

Q

R

S

2 (e) Circle a pair of perpendicular lines.

[1 mark]

Ρ

Q

R

S

3	Solve $2(3x+1) > 3-4x$ [2 m	narks]
	Answer	

Turn over for the next question

Turn over ▶

4	The equation of a curve is $y = x^2 - 5x$	
4 (a)	Work out $\frac{dy}{dx}$	[2 marks]
	Answer	
4 (b)	P is a point on the curve. The tangent to the curve at P has gradient 1	
	Work out the coordinates of <i>P</i> .	[2 marks]
	Answer ()	

5	In the expansion of	$(x+2)(x^2+kx-3)$	the coefficient of x^2 is zero.
5 (a)	Work out the value of k .		[1 mark]
	Ansv	ver	
5 (b)	Work out the coefficient	of x.	[2 marks]
	Ansv	ver	
	Т	urn over for the next qu	estion

Turn over ▶

The number of red balls is increased by 30% The number of blue balls is increased by 30% There are now 35 more red balls than blue balls in the bag. Work out the value of x. [4 marks]	6	A bag contains $5x$ red balls and $2x$ blue balls.
[4 marks]		The number of blue balls is increased by 30%
Answer		
		Answer

7	$3x^3 - 2x^2 - 147x + 98 \equiv (ax - c)(bx + d)(bx - d)$	
	where a, b, c and d are positive integers.	
	Work out the values of a,b,c and $d.$ [3 r	narks]
	7	
	$a = \dots \qquad b = \dots \qquad c = \dots \qquad d = \dots \qquad d = \dots$	

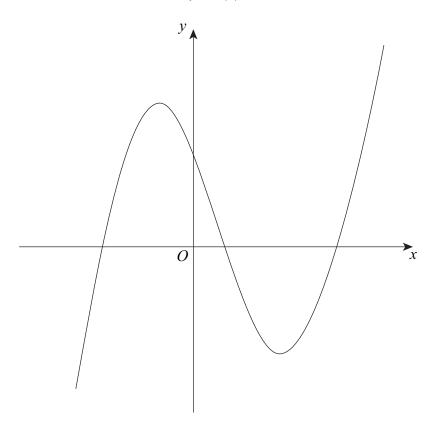
Turn over for the next question

Turn over ▶

0	Cimplify fully	5 <i>x</i>	3	
0	Simplify fully	(x+4)(x-6)	$-\frac{1}{(x-6)}$	

[4 marks]

Answer


9 Given that $\begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a+1 \end{pmatrix}$

work out the values of a and b.

[5 marks]

 $a = \dots, b = \dots$

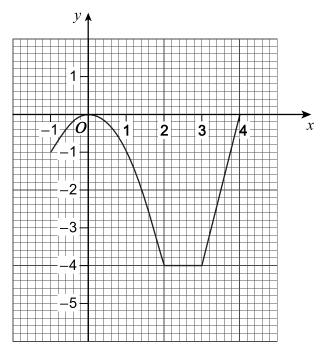
10 This is a sketch of the curve y = f(x)

10 (a) For this curve $\frac{dy}{dx} = 3x^2 - 4x - 4$

Work out the range of values of x for which f(x) is a decreasing function. Write your answer as an inequality.

[4 marks]

10 (b)	Work out the equation of the normal to the curve at the point (1, -2) Give your answer in the form $y=mx+c$ [5 marks]
	Answer
	Answer


Turn over for the next question

Turn over ▶

11 Here is the graph of y = f(x)

It consists of a quadratic curve and two straight lines.

12	Make y the subject of $\sqrt{\frac{3xy}{x+y}} = 4$
	[4 marks]
	Answer
	Turn over for the next question

1 5

Turn over ▶

13	$x^2 + 2ax + b \equiv (x - 5)^2 - a$
	Work out the values of a and b . [3 marks]
	$a = \dots, b = \dots$

Write	$\frac{5\sqrt{2}}{3\sqrt{6}-7}$	in the form	$\sqrt{w} + \sqrt{k}$	where w and k are integrated where w
				[5
	An	swer		

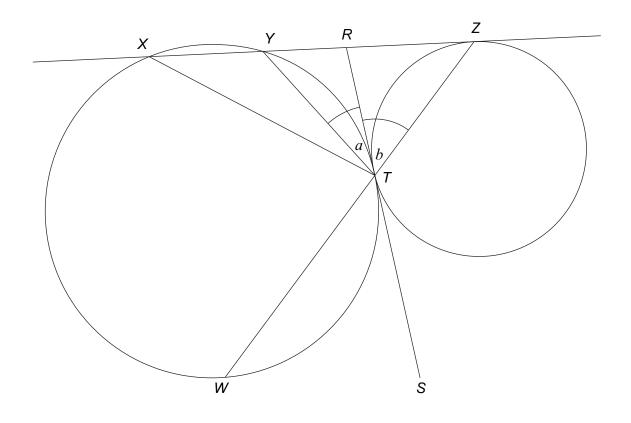
1 7

Turn over ▶

Do not write outside the box

18

The diagram shows two circles touching externally at T. Points X, Y and W lie on the larger circle.


RTS is a tangent to both circles.

XYRZ is a tangent to the smaller circle at Z.

ZTW is a straight line.

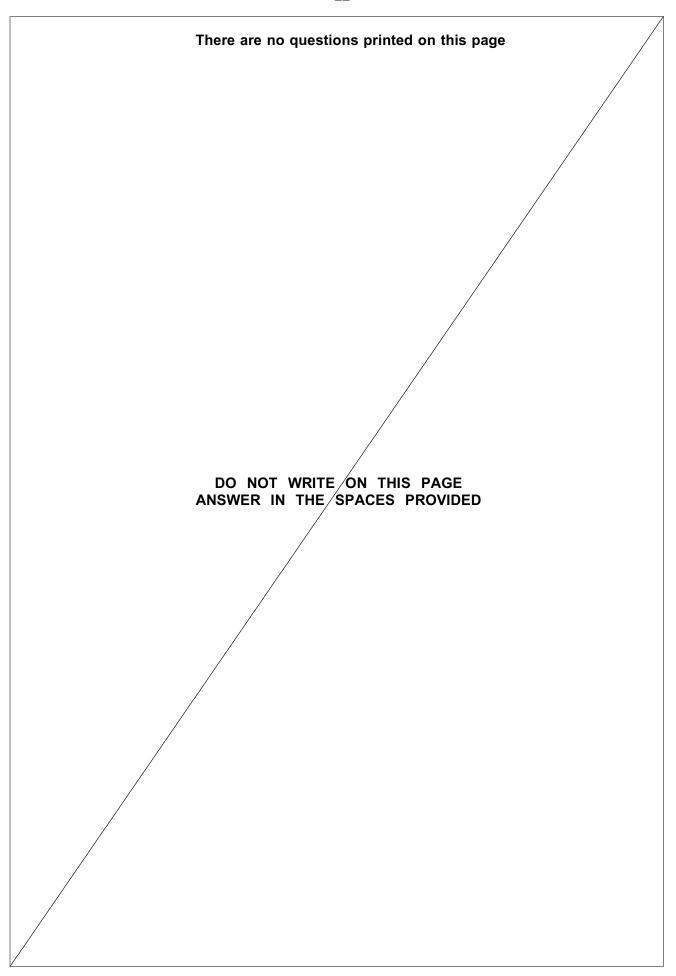
Angle YTR = a and angle ZTR = b

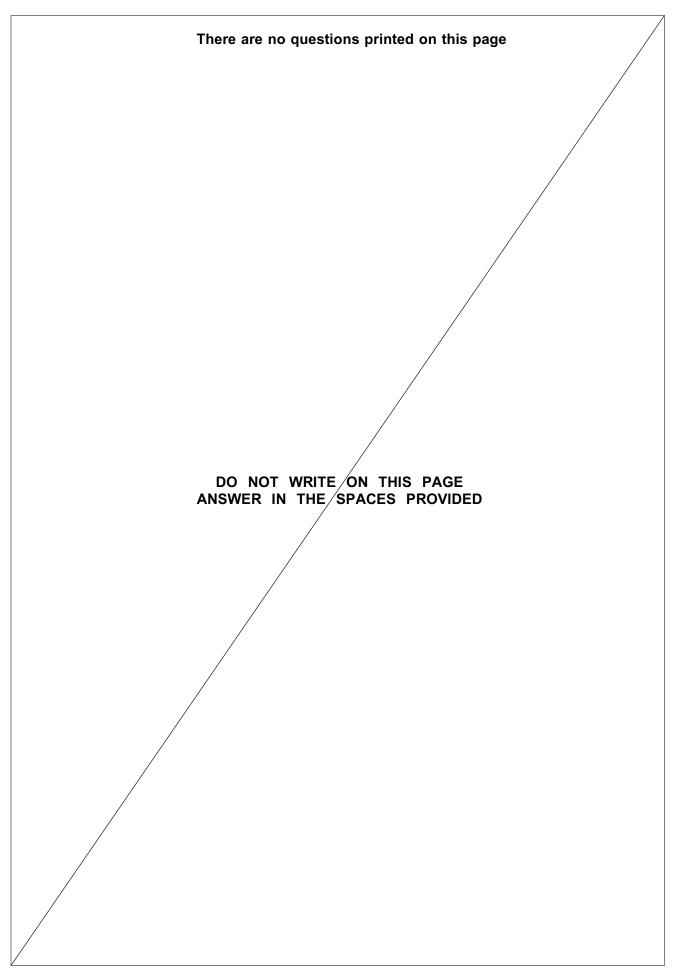
Not drawn accurately

15 (a)	Give reasons why angle $\it RZT = b$	[2 marks]
15 (b)	Angle $RZT = b$	
	Prove that angle XTW = angle YTZ	
		[3 marks]

1 9

Turn over ▶


16	By factorising fully, simplify $\frac{x^4 - x^3 - 2x^2}{x^4 - 5x^2 + 4}$ [5 marks]
	Answer


17	Prove that 2	$2 \tan^2 \theta + 1 \equiv$	$\frac{1+\sin^2\theta}{1-\sin^2\theta}$	where $\sin^2\theta \neq 1$	[3 marks]

END OF QUESTIONS

