Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2014

Further Mathematics

8360/1

Level 2

Paper 1 Non-Calculator

Monday 16 June 2014 9.00 am to 10.30 am

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$C$$
 A
 C
 A
 B

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Δηςωρη	all	questions	in	tha	enacee	provided
Allswei	all	questions	Ш	uie	spaces	provided.

1 A straight line has gradient -2 and passes through the point (-3, 10).

Work out the equation of the line. Give your answer in the form y = mx + c

[2 marks]

.....

Answer

2 $y = 4x^3 - 7x$

Work out $\frac{dy}{dx}$

[2 marks]

Answer

Turn over for the next question

Turn over ▶

3	A transformation is given by the matrix M , where $\mathbf{M} = \begin{pmatrix} 1 & a \\ 0 & 2 \end{pmatrix}$	
	The image of the point $(b, 5)$ under M is $(5, b)$.	
	Work out the values of a and b .	[3 marks]

$$a = \dots \qquad b = \dots$$

4	Solve	20 + w < 3(w + 2)	marks]
		Answer	

5	$f(x) = 10 - x^2$	for all values o	f <i>x</i> .			
	g(x) = (x + 2a)(x - 2a)	+ 3) for all v	values of x .			
5 (a)	Circle the correct	value of $f(-4)$				[1 mark]
	26	-6	36	16	196	
5 (b)	Write down the ra	nge of $f(x)$.				[1 mark]
		Answer				
5 (c)	g(0)=24					
	Show that $a = 4$					[1 mark]
5 (d)	Hence solve	f(x) = g(x)				[4 marks]
		Answer				

6	The <i>n</i> th term of a sequence is $\frac{2n^2 + 7}{3n^2 - 2}$	
6 (a)	Work out the 7th term. Give your answer as a fraction in its simple:	st form. [2 marks]
	Answer	
6 (b)	Show that the limiting value of $\frac{2n^2 + 7}{3n^2 - 2}$	as $n o \infty$ is $\frac{2}{3}$ [2 marks]

7 *ABCD* is a cyclic quadrilateral.

Not drawn accurately

Work out the values of x and y .	5 marks]

Turn over ▶

8 (a)	Factorise fully	$3x^2 - 12$	[2 marks]
			[Z marko]
		Answer	
8 (b)	Factorise 5x	$x^2 + 4xy - 12y^2$	[3 marks]
		Answer	

9 ABC is a straight line. BC is 20% of AC.

Work out the coordinates of B.

[4 marks]

Answer (......

Turn over for the next question

Turn over ▶

10	Rationalise the denominator of	$\frac{8}{3-\sqrt{5}}$	
	Give your answer in the form	$a+b\sqrt{5}$	where a and b are integers. [3 marks]
	Answer		

11	(a)	Here is triangle ABC.
----	-----	-----------------------

Not drawn accurately

Show that angle $B=60^{\circ}$	[3 marks]
Hence work out the area of triangle ABC .	[3 marks]

9

11 (b)

I2 The	line $x = -9$ is a	tangent to the	circle,	centre $C(8)$	3, 20)
--------	--------------------	----------------	---------	---------------	--------

12 (a)	Show that the radius of the circle is 17. [1 mark]
12 (b)	The circle intersects the y -axis at A and B .
	Show that the length AB is 30. [3 marks]

13	A curve has equation $y = x^3 - 3x^2 + 5$
13 (a)	Show that the curve has a minimum point when $x=2$ [4 marks]
13 (b)	Show that the tangent at the minimum point meets the curve again when $x=-1$ [3 marks]

1 3

Turn over ▶

14	(x-a)	is a factor of	$x^3 + 2ax^2 - a^2x - 16$	
14 (a)	Show that	<i>a</i> = 2		[2 marks]
14 (b)	Solve	$x^3 + 4x^2 - 4x -$	16 = 0	[4 marks]
		Answer .		

15	Prove that	$\frac{\sin\theta - \sin^3\theta}{\cos^3\theta}$	\equiv tan $ heta$		[3 marks]

Turn over for the next question

1 5

Turn over ▶

16	2 22	-2bx +	7 <i>a</i> –	2(2	_a \2		
16	$2x^2$ –	-2bx +	$1a \equiv$	$\mathbf{Z}(\mathbf{X} -$	a) $^-$ -	+ :	۰

Work out the ${\bf two}$ possible pairs of values of a and b.

[6 marks]

 	•••••	 •••••

$$a = \dots, b = \dots$$

and

$$a = \dots, b = \dots$$

END OF QUESTIONS

Copyright © 2014 AQA and its licensors. All rights reserved.

