Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2014

Further Mathematics

8360/2

Level 2

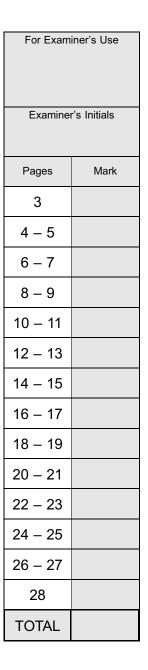
Paper 2 Calculator

Friday 20 June 2014 9.00 am to 11.00 am

For this paper you must have:

- a calculator
- mathematical instruments.

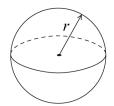
Time allowed


• 2 hours

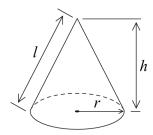
Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet


Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

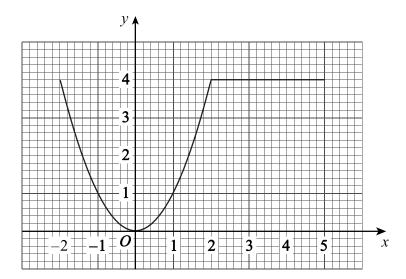
$$A \stackrel{C}{\longrightarrow} A$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by


$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

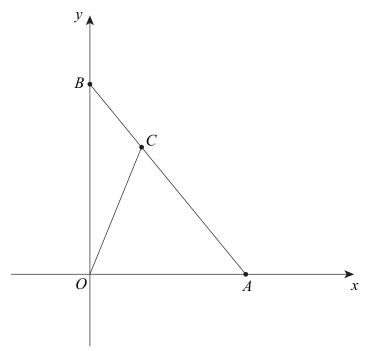
$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

The graph of y = f(x) for the full domain is shown. The graph consists of a quadratic curve and a straight line.

Complete the boxes to describe $\mathbf{f}(x)$.

[3 marks]

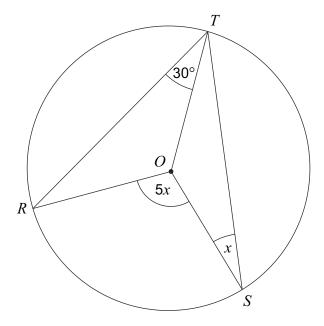

$$f(x) =$$

$$-2 \leqslant x \leqslant 2$$

Turn over for the next question

2 The equation of line AB is y = 12 - 2x

The area of triangle OCA is 24 square units.


Not drawn accurately

[5 marks]

Answer (......

R, S and T are on the circumference of a circle, centre O. 3

Not drawn accurately

3 (a)	Give a reason why angle $OIS = x$	

	,		[1 mark]
Vork out the valu	ue of x .		[3 marks]

vork out the value of x.	3 marks]

Turn over for the next question

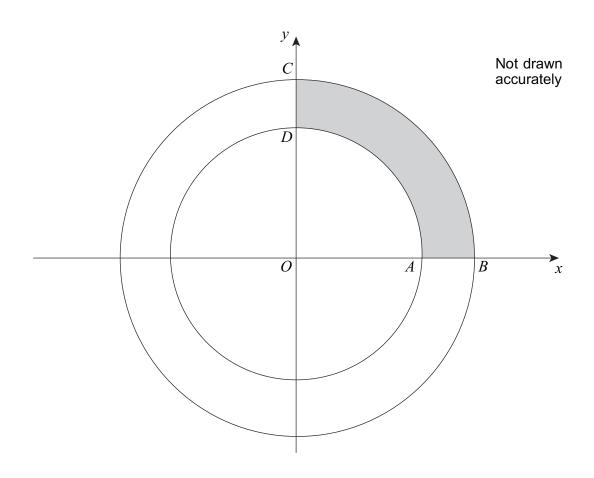
9

Turn over ▶

3 (b)

4 (a)	Expand $x^2(x-2)$	[2 marks]
	Answer	
4 (b)	A curve has equation $y = x^2(x-2)$ Work out the gradient of the curve at the point $(3, 9)$.	[3 marks]
	Answer	
4 (c)	Line L is the tangent to the curve $y = x^2(x-2)$ at the point (3)	3, 9).
	Work out the equation of L . Give your answer in the form $y=mx+c$	[2 marks]
	Answer	

5 Solve $\frac{4c+3}{2} + \frac{c-8}{5} = 1$


[4 marks]

Turn over for the next question

Turn over ▶

6 Two circles, each with centre *O*, are shown. The equations of the circles are

$$x^2 + y^2 = 289$$
 and $x^2 + y^2 = 121$

Work out the perimeter of the shaded section <i>ABCD</i> .	
[5 marks]
	•

7 (a) Simplify $\sqrt{x^5 \times x^9}$

Give your answer in the form x^p where p is an integer.

[2 marks]

Answer

7 (b) Solve $y^{-3} = 125$

[2 marks]

 $y = \dots$

Turn over for the next question

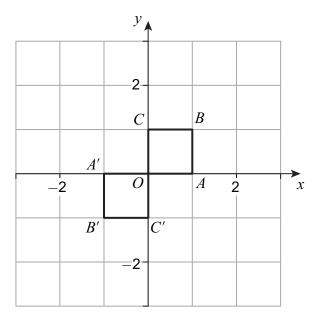
$$\mathbf{M} = \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$$

Show that
$$\mathbf{M}^3 = \mathbf{I}$$

[4 marks]

9 78° Not drawn accurately C115° - D 32° AB is parallel to CD. Is *EF* parallel to *CD*? You **must** show your working. [3 marks]

Turn over for the next question



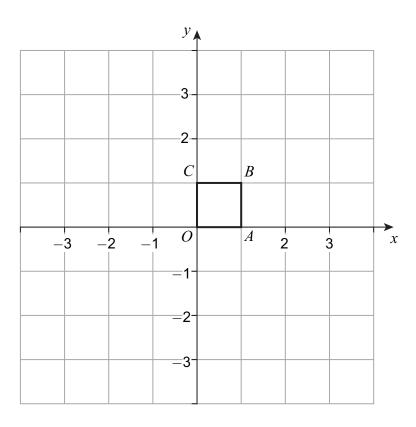
Turn over ▶

10 The unit square *OABC* has vertices

$$O(0, 0)$$
 $A(1, 0)$ $B(1, 1)$ $C(0, 1)$

10 (a) OABC is mapped to OA'B'C' under transformation matrix **M**.

Work out matrix M.


[2 marks]

swer

10 (b) OABC is mapped to OA''B''C'' under transformation matrix $\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$

Draw and label OA''B''C'' on the diagram below.

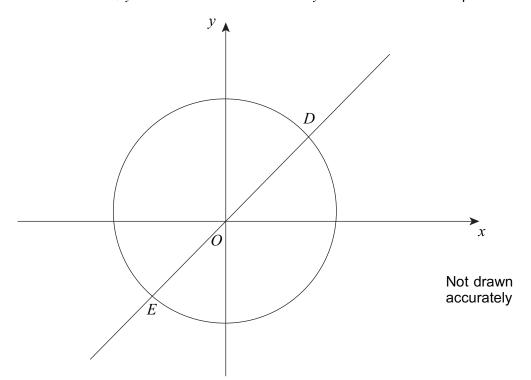
[3 marks]

Turn over for the next question

11 (a)	Simplify fully	$8c^{7}$. 6	c^2
11 (a)	Simplify fully	$\frac{15d^6}{15d^6}$ $\frac{1}{5}$	d^3

[3 marks]

Answer


11 (b) Write as a single fraction $\frac{5}{m+1} + \frac{6}{m-4}$

Give your answer in its simplest form.

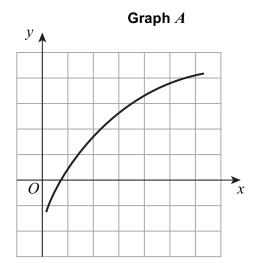
[4 marks]

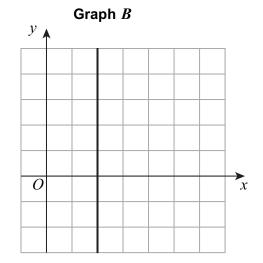
Answer

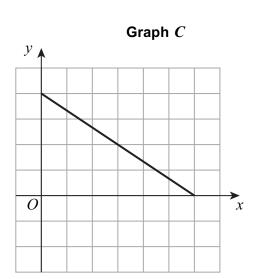
The circle $x^2 + y^2 = 20$ and the line y = 2x intersect at points D and E.

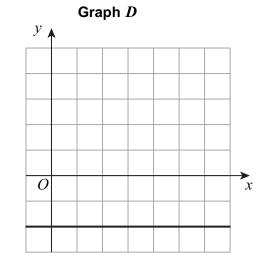
Work out the coordinates of D and E.

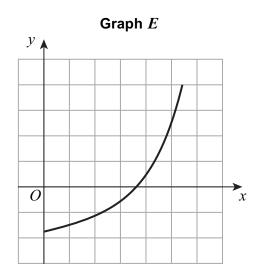
Do **not** use trial and improvement.


You **must** show your working.


[5 marks]


Turn over ▶




13 Here are five graphs.

	For each of the following statements, decide which graph is being described. Circle your answer each time.						
13 (a)	The rate of change of y with respect to x is always negative. [1 mark]						[1 mark]
		A	В	C	D	E	
13 (b)	The rate	of change of y	y with respect	t to x is alway	/s zero.		[1 mark]
		A	В	C	D	E	
13 (c)	As x incre	eases, the rate	e of change c	of y with resp	ect to x decre	ases.	[1 mark]
		A	В	C	D	E	
			Turn over fo	r the next qu	uestion		

Turn over ▶

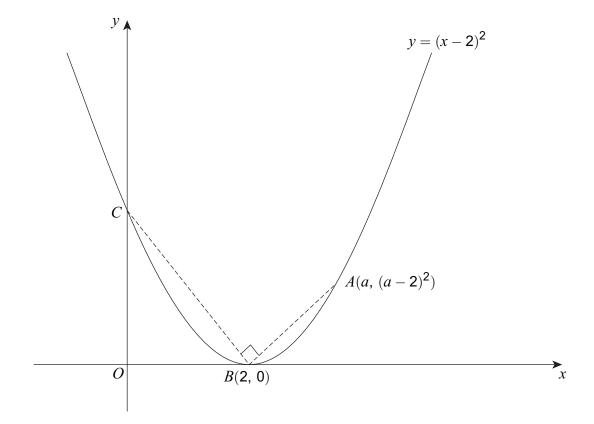
14	Rearrange	$x = \frac{2w + 1}{5 - 3w}$	to make w the subject.	
				[4 marks]

Answer

15 (a)	The <i>n</i> th term of a sequence is $n^2 + 12n + 27$
	By factorising, or otherwise, show that the 20th term can be written as the product of two prime numbers. [2 marks]
15 (b)	The <i>n</i> th term of a different sequence is $n^2 - 6n + 14$
	By completing the square, or otherwise, show that every term is positive. [3 marks]

Turn over for the next question

1 9


Turn over ▶

16 (a) Simplify $\frac{(a-2)^2}{a-2}$

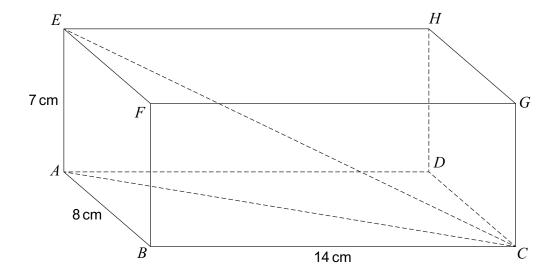
[1 mark]

Answer

16 (b) Here is a sketch of the curve $y = (x-2)^2$

- The curve touches the *x*-axis at *B* and intersects the *y*-axis at *C*.
- Angle ABC is 90°.
- The curve passes through $A(a, (a-2)^2)$

Work out the value of a . [5 marks]
Answer
Turn ever for the next guestion
Turn over for the next question


2 1

Turn over ▶

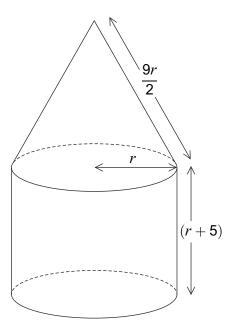
17 (a)	Factorise fully	$12c^2d - 9d^2$	[2 marks]
		Answer	
17 (b)	Factorise fully	$(w+4)^3 - (w+4)^2(w+1)$	[3 marks]
		Answer	

18 ABCDEFGH is a cuboid.

Work out the angle between EC and ABCD.

[3 marks]

Turn over ▶



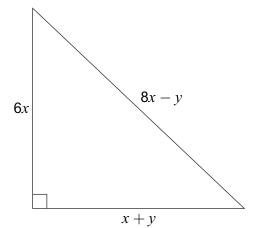
On this diagram all lengths are given in centimetres.

A cylinder and cone are joined together to make a solid.

The cylinder has radius r and height (r+5)

The cone has radius r and slant height $\frac{9r}{2}$

19 (a) Show that the total surface area of the solid, in cm 2 , is $\frac{5\pi r}{2}(3r+4)$ [4 marks]



19 (b)	The total surface area of the solid is $1200\pi\text{cm}^2$					
	Work out the value of r . [5 marks]					
	Answer					
	Turn over for the next question					

2 5

Turn over ▶

	··			
20	The diagram	shows a	right-angled	triangle.

Not drawn accurately

x: y = 2:3	[6 marks]

21	Solve	$16 \sin^2 x = 1$	for	0° ≤ <i>x</i> ≤ 270°	
					[5 marks]

Answer

Turn over for the next question

Turn over ▶

22	The curve constant.	y = f(x)	has	$\frac{\mathrm{d}y}{\mathrm{d}x} = kx(x-3)^3$	where k is a negative
	There is a stati	onary point a	t x = 3		
	Determine the You must show			y point.	[3 marks]
		Answer			

END OF QUESTIONS

Copyright $\ensuremath{\texttt{©}}$ 2014 AQA and its licensors. All rights reserved.