

LEVEL 2 CERTIFICATE FURTHER MATHEMATICS 8360/2

Paper 2 Calculator

Mark scheme

June 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
sc	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
	Alternative method 1	T		
	3a = 4(2a + 3) or $3a = 8a + 12$		oe equation	
	or	M1		
	5a = 4b			
	$(a =) - \frac{12}{5}$ or $-2\frac{2}{5}$ or -2.4	A1		
	(<i>b</i> =) –3		ft their $a \times 1.25$ evaluated	
		A1ft	or $\frac{\text{their } 5a}{4}$ evaluated	
			$a \neq 0$	
			if awarding ft M1 is implied	
	Alternative method 2	T		
	3a + 5a = 4(2a + 3) + 4b		oe equation	
	or $8a = 8a + 12 + 4b$	M1		
1(a)	or 4 <i>b</i> = –12			
	(<i>b</i> =) –3	A1		
	$(a =) - \frac{12}{5}$ or $-2\frac{2}{5}$ or -2.4		ft their $b \times 0.8$ evaluated	
	5 5	A1ft	or $\frac{\text{their } 4b}{5}$ evaluated	
		7,111	<i>b</i> ≠ 0	
			if awarding ft M1 is implied	
	Ad	ditional G	Buidance	
	Alt 1			
	a = 2 $b = 2.5$ (5a = 4b is implied)			M1A0A1ft
				МО
	Accept $\frac{-12}{5}$ or $\frac{12}{-5}$ for $-\frac{12}{5}$ (apply throughout scheme for values)			
	Only solutions seen with one correct and the other incorrect (or missing)			2 marks

Q	Answer	Mark	Comments	
	$2m + 2 = 1$ or $2m + 1 = 0$ or $\frac{1-2}{2}$ or $\begin{pmatrix} 2m+2 & 2m+1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1	oe equation or calculation	
	$-\frac{1}{2}$ or -0.5			
	Ad	ditional G	Buidance	
1(b)	Condone missing brackets in $\begin{pmatrix} 2m+2 & 2m+1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$			
	Allow $\begin{pmatrix} 2m+2 & 2m+1 \\ 2-2 & 2-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$			
Mark positively eg error in matrix multiplication but $2m + 2 = 1$ and answer -0.5				M1A1
	More than one answer given is A0			
	eg $m+2=1$ and $2m+1=0$ (mark positively)		M1	
	Answer -1 and -0.5			A0

Q	Answer	Mark	Comments
	$\left(\frac{4+6}{2}, \frac{1+9}{2}\right)$ or (5, 6)	M1	oe eg $\left(4 + \frac{6-4}{2}, 1 + \frac{11-1}{2}\right)$ may be on diagram
2	$\frac{13}{4-10}$ or $\frac{4}{-6}$ or $\frac{0-\text{their } 6}{14-\text{their } 5}$ or $\frac{-6}{9}$	M1	oe method for at least one gradient or at least one unsimplified gradient seen $eg \ \frac{-3-1}{10-4} \ or \ \frac{-4}{6}$ or $\frac{their \ 6-0}{their \ 5-14} \ or \ \frac{6}{-9}$ is M1M1
	$\frac{13}{4-10} \text{ or } \frac{4}{-6}$ and $\frac{0-6}{14-5} \text{ or } \frac{-6}{9}$ and shows that the gradients are equal	A1	oe method for both gradients or two unsimplified gradients seen and gradients shown to be equal $eg \ \frac{4}{-6} \ and \ \frac{-6}{9}$ and these are both $-\frac{2}{3}$ $SC2 \ (5, 6) \ and \ at \ least \ one \ gradient \ given \ as -\frac{2}{3} SC1 \ at \ least \ one \ gradient \ given \ as -\frac{2}{3}$

Q	Answer	Mark	Comments
---	--------	------	----------

	Additional Guidance				
	Mark intention for 1st M1 eg condone 5, 6	M1			
	$\frac{4}{-6} = -\frac{2}{3}$ and $\frac{-6}{9} = -\frac{2}{3}$	M2A1			
	$\frac{13}{4-10} = -\frac{2}{3} \text{and} \frac{0-6}{14-5} = -\frac{2}{3}$	M2A1			
	$\frac{4}{-6} = \frac{-6}{9}$	M2A1			
	$\frac{4}{-6}$ and $\frac{-6}{9}$ and parallel	M2A0			
	$\frac{4}{6}$ is 2nd M0 unless recovered to $-\frac{4}{6}$				
	$\frac{4}{6} \text{ recovered to } -\frac{4}{6} \text{ and } \frac{6}{9} \text{ recovered to } -\frac{6}{9} \text{ could go on to score full marks}$ $\text{both gradients } = -\frac{2}{3} \text{ with no method or unsimplified gradients seen cannot score the A mark}$				
2 cont					
	$\frac{4}{-6}x$ or $\frac{-6}{9}x$ do not score 2nd M1 unless recovered				
	Equation of a line does not score 2nd M1 unless a method or unsimplified gradient seen				
	Using the reciprocals of gradients can score a maximum of M1M0A0				
	Allow -0.66 or -0.67 for $-\frac{2}{3}$ and $\frac{4}{-6}$ etc				
	Ignore conversion attempt after a correct fraction is seen				
	or method for $\frac{4}{-6}$				
	1 = 4m + c and $-3 = 10m + c$				
	4 = -6m				
	$\frac{4}{-6} = m \qquad \text{(similar method possible for } \frac{-6}{9}\text{)}$	(2nd) M1			

Q	Answer	Mark	Comments	
	$a^2 < 0$		B1 for each correct row	
	$-1 < b^3 < 1$	D.4		
	$\frac{b}{a} < 0$	B4		
	a-b>0			
3	Additional Guidance			
	Two boxes ticked in a row with other 3	correct B3		
	One row correct, two rows blank, all the	ree boxes	s ticked in another row B1	
	Only crosses used instead of ticks			
	eg cross in all 4 correct boxes with all	s blank B4		
	Ticks and crosses used – only mark th	that row		
	eg Top row has X X ✓ scores B1 t	V		
	Second row has X ✓ X scores B0 for	or that row		

Q	Answer	Mark	Comments
	$(y =) \frac{3}{2}x$ or $(y =) 1.5x$ or $\frac{3}{2}$ or 1.5	M1	oe eg $(y =) \frac{3x - 9}{2}$
	$\frac{x^5 - 17}{10} = \frac{3}{2}$	M1dep	oe implies M2
4	$x^5 = \frac{3}{2} \times 10 + 17$ or $\sqrt[5]{32}$ or correctly rearranges $\frac{x^5 - 17}{10} = k$ to the form $x^5 = (k \text{ any non-zero value})$	M1	oe eg $x^5 = 15 + 17$ or $x^5 = 32$ or $\sqrt[5]{15 + 17}$ must rearrange to the form $x^5 =$
	2	A1	

Q	Answer	Mark	Comments
,			

	Additional Guidance	
	Condone error seen in rearrangement of $3x - 2y = 9$ if gradient is $\frac{3}{2}$ May go on to score M3A1	
	$\frac{x^5 - 17}{10} = \frac{3}{2}x$	M1M0M0A0
	(gradient =) 3	M0M0dep
	$\frac{x^5 - 17}{10} = 3$	
4	$x^5 = 30 + 17$ (3rd M is not dependent)	M1
cont	2.16	A0
	$\frac{3}{2}$	M1
	$\frac{x^5 - 17}{10} = -\frac{2}{3}$	MO
	$x^5 = -\frac{2}{3} \times 10 + 17$ (3rd M is not dependent)	M1
	1.595	A0
	Condone answer (2,)	
	2 embedded	МЗАО

Q	Answer	Mark	Comments	
5(a)	a^{-2}	B2	B1 applies an index law or changes root to fractional or decimal power in correct expression eg $ \sqrt[4]{a^{-8}} \text{or} (a^{-8})^{\frac{1}{4}} \text{or} (a^{8})^{-\frac{1}{4}} $ or $a^{-\frac{8}{4}} \text{or} \frac{1}{\frac{8}{a^{\frac{1}{4}}}} \text{or} \frac{1}{a^{\frac{2}{a}}}$ or $a^{\frac{1}{4}} \times a^{-\frac{9}{4}} \text{or} a^{\frac{1}{4}} \times \frac{1}{\frac{9}{a^{\frac{9}{4}}}}$ or $\left(\frac{1}{a^{8}}\right)^{\frac{1}{4}} \text{or} \sqrt[4]{\frac{1}{a^{\frac{8}{4}}}}$ or $\left(a \times a^{-9}\right)^{\frac{1}{4}} \text{or} \left(a \times \frac{1}{a^{\frac{9}{4}}}\right)^{\frac{1}{4}}$	
	Ad	ditional G	Guidance	
	$a^{\frac{-8}{4}}$ or $a^{\frac{8}{-4}}$		В	1
	a^{-2} in working with -2 on answer line		В	1
	a^{-2} in working with $\frac{1}{a^2}$ on answer line		В	1
	B1 response followed by further work is	s still awar	ded B1	
	Allow 0.25 for $\frac{1}{4}$ etc			
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments	
	$32c^2d^2$ or $32(cd)^2$	В3	B2 (numerator =) $64c^3d^6$ or single term answer with two 32, c^2 and d^2 (not in a denor B1 single term answer with 32, c^2 and d^2 (not in a denor SC2 factorised correct express $16cd(2cd)$	ninator) one of ninator)
	Ad	ditional G	Buidance	
	$2c^2d^2$ or $32c^2d$ or $32c^2$ or $\frac{32d^2}{c^3}$	c^2 or $\frac{32d^2}{c^3}$ or $\frac{c^2d^2}{32}$ or $64(cd)^2$ etc		B2
5(b)	$32c^3d$ or c^2 or $\frac{d^2}{c}$ or $\frac{c^2d}{32}$ or $\frac{32}{c^2}$ etc			B1
	$\frac{32c^2d^2}{1}$ or $\frac{32(cd)^2}{1}$			B2
	Allow denominator of 1 in a B2 or B1 ar	nswer eg	$\frac{32c^2d}{1}$	B2
	Multiplication signs in a correct express	sion eg 32	$2 \times c^2 \times d^2$	B2
	Allow multiplication signs in a B2, SC2	Allow multiplication signs in a B2, SC2 or B1 answer eg $32 \times c^3 \times d$		
	Do not accept 2^5 for $32 - \operatorname{eg} 2^5 c^2 d$			B1
	If answer line scores B1 or B0 check working lines for possible response for up to 2 marks			
	$32c^2d^2$ in working with different answer	on answe	r line	B2

Q	Answer	Mark	Comments
	$A(-\frac{3}{2},0)$ and $B(2,0)$		ое
	2 / /	B2	B1 $A(-\frac{3}{2}, 0)$ oe or $B(2, 0)$
6(a)			204 4(2.0) and D(3.0) as
0(a)			SC1 $A(2, 0)$ and $B(-\frac{1}{2}, 0)$ oe
		Additional G	uidance
	Ignore the diagram		
6(a)	Ignore the diagram	Additional G	SC1 $A(2, 0)$ and $B(-\frac{3}{2}, 0)$ or uidance

6(b)	$-\frac{3}{2} < x < 2$ or $2 > x > -\frac{3}{2}$	B1ft	oe correct or ft their values from (a) must be a single inequality in x
------	--	------	---

Q Answer	Mark	Comments
----------	------	----------

	Additional Guidance				
	$-\frac{3}{2} \leqslant x < 2$	В0			
	$-\frac{3}{2} > x < 2$	В0			
	$-\frac{3}{2} < x$ and $x < 2$	ВО			
	their (a) $A(-2, 0)$ and $B(\frac{3}{2}, 0)$ (B0 in (a))				
6(b) cont	(b) $-2 < x < \frac{3}{2}$	B1ft			
	their (a) $A(2,0)$ and $B(-\frac{3}{2},0)$ (SC1 in (a))				
	(b) $2 < x < -\frac{3}{2}$	B0ft			
	their (a) $A(-3, 0)$ and $B(2, 0)$ (B1 in (a)) (b) $2 < x < -3$	B0ft			
	their (a) A (4, 0) and B (-2, 0) (B0 in (a)) (b) $-2 < x < 4$	B1ft			
	Only one value in (a) can only score in (b) for $-\frac{3}{2} < x < 2$ or $2 > x > -\frac{3}{2}$				

Q	Answer	Mark	Comments	5	
	Horizontal straight line	B1	mark intention		
	Ac	ditional G	uidance		
	Ignore any attempt at an equation				
_, ,	Mark the entire graph on the grid				
7(a)	Ignore any graph not on the grid				
	Line clearly drawn on the x-axis			B1	
	Line does not need to start from the y-axis				
	Ignore any points plotted				
	1		1		
	Straight line with gradient > 0	B1	mark intention		
	Additional Guidance				
	Ignore any attempt at an equation				
	Mark the entire graph on the grid				

	Straight line with gradient > 0	B1	mark intention		
	Additional Guidance				
	Ignore any attempt at an equation				
	Mark the entire graph on the grid				
7(b)	Ignore any graph not on the grid				
	Vertical line				
	A straight line joined to another line with a different gradient				
	Line does not need to start at (0, 0)				
	Ignore any points plotted				

Q	Answer	Mark	Comments		
8(a)	$7 + 12\sqrt{5} + 6(9 - 2\sqrt{5})$ or $12\sqrt{5} + 6(-2\sqrt{5}) = 0$ or $12\sqrt{5} \div 2\sqrt{5} = 6$ or states that need to add 6 lots of $(9 - 2\sqrt{5})$ or $7th term$	M1	oe eg $7 + 6 \times 9$ or $7 + 54$ or $6 \times -2 = -12$ allow $7 + 12\sqrt{5} + (n-1)(9 - 2\sqrt{5})$ with $n = 7$ allow $7 + 12\sqrt{5} + n(9 - 2\sqrt{5})$ with $n = 6$		
	61	A1			
	Additional Guidance				
	61 in working lines with 7(th) on answer line			M1A0	
	If repeatedly adding $(9-2\sqrt{5})$ they must stop after adding 6 lots or clearly select the relevant one				
	Answer 6 or 6th term with M1 not seen			M0A0	
	Ignore any conversions to decimals				
	Beware $(9-2\sqrt{5})(9+2\sqrt{5}) = 61$			M0A0	

Q	Answer	Mark	Comments	3
	$\frac{29}{5}$ or $5\frac{4}{5}$ or 5.8	B2	oe eg $5\frac{8}{10}$ B1 any two of 1, $\frac{11}{5}$, $\frac{26}{10}$	oe values
	Additional Guidance			
8(b)	Terms must be evaluated for B1 unless correct answer seen			
O(B)	eg1 $\frac{3-1}{1+1} + \frac{12-1}{4+1} + \frac{27-1}{9+1}$			В0
	eg2 $\frac{3-1}{1+1} + \frac{12-1}{4+1} + \frac{27-1}{9+1} = 5.8$			B2
	1 7 2.6			B1
	Ignore conversion attempts after a correct value seen			

Q	Answer	Mark	Comments		
	Alternative method 1				
	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence		
	-3 - 2 3 - 8 (13 - 18 27 - 32) or -5 -5 (-5 -5)	M1dep	subtracts $2n^2$ from the given terms		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		
8(c)	Alternative method 2				
	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted		
			may be seen by the sequence		
	3a + b = 33 and substitutes $a = 2$ or $b = 0$	M1dep	oe		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		

Q	Answer	Mark	Comments		
	Alternative method 3				
	Any three of $a + b + c = -3$ 4a + 2b + c = 3 9a + 3b + c = 13 16a + 4b + c = 27	M1			
	3a + b = 33 and $5a + b = 13 - 3$ or a = 2 and $b = 0$	M1dep	oe obtains two correct equations in same two variables from their equations		
	$2n^2-5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		
	Alternative method 4				
8(c) cont	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence		
	$2 \times 1^{2} + b \times 1 - 5 = -3$ or $2 + b - 5 = -3$ or $b = 0$	M1dep	$2n^{2} + bn - 5 = -3 \text{ with } n = 1 \text{ substituted}$ oe $eg \ 2 \times 2^{2} + b \times 2 - 5 = 3$		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		
	Additional Guidance				
	Condone working in a different variable				
	Alt 1 2nd M1 Subtracting given terms from $2n^2$ leading to 5 5 (5 5) must be recovered eg final answer $2n^2 - 5$ $(2n^2 - 5n \text{ or } 2n^2 - 5n - 5 \text{ is not a recovery})$				
	Answer $2n^2$ scores at least M1				
	Condone $n = 2n^2 - 5$ or $2n^2 - 5 = 0$			M2A1	

1) and $x^{10}(x-1)$
r than p) isation $-(p+6)^{9}$ $-(p+6)^{8}$
B1
В0
B2
B1
i

Q	Answer	Mark	Comments		
	$f(x) \le 25$ or $25 \ge f(x)$	B2	B1 $f(x) < 25$ or $k \le f(x) \le 25$ or $k < f(x) \le 25$ where k is any number < 25 SC1 ≤ 25 or $x \le 25$	5	
		Iditional G			
	Condone $f(x)$ replaced by eg y or f or $f(x)$ or				
	Equivalent inequalities may be seen				
	25 > f(x)			B1	
10(a)	Allow $-\infty < f(x) \le 25$			B2	
	Condone $-\infty \le f(x) \le 25$			B2	
	$-\infty < f(x) < 25$ or $-\infty \leqslant f(x) < 25$			B1	
	$[-\infty, 25]$ or $(-\infty, 25]$			B1	
	(–∞, 25)			В0	
	Condone $f(x) = \leq 25$			B2	
	Condone $f(x) = \langle 25 \rangle$			B1	
	Condone $f(x) = x \le 25$			SC1	
	$f(x) \le 25$ in working with list of integers on answer line			B1	
	Only a list of integers			В0	

Q	Answer	Mark	Comments	
	$1 \leqslant g(x) \leqslant 5$ or $5 \geqslant g(x) \geqslant 1$	B2	B1 $1 \le g(x) < 5$ or $1 < g(x)$ or $1 < g(x) < 5$ or $1 < g(x) < 5$ or $g(x) \ge 1$ and $g(x) \le 5$ or $1 \le g(x) \le k$ where k is a constant > 1 or $p \le g(x) \le 5$ where p is a constant < 5 SC1 $1 \le x \le 5$	x) ≤ 5
	Ac	Iditional G	uidance	
	Condone $g(x)$ replaced by eg y or g or g in B2 or B1 responses	f or fx or $5 - x^2$		
	Equivalent inequalities may be seen	eg 5 ≥ g(x	s) > 1	B1
10(b)	Only $g(x) \ge 1$ given as the answer			В0
	Only $g(x) \le 5$ given as the answer			В0
	$1 \leqslant g(x) \leqslant 4$			B1
	$1 \leqslant g(x) < 4$			В0
	$0 \leqslant g(x) \leqslant 5$			B1
	$0 < g(x) \leqslant 5$			В0
	Invalid statements do not score			
	eg1 $1 \leqslant g(x) \geqslant 5$			B0
	$eg2 1 \geqslant g(x) \leqslant 5$			B0 B0
	eg3 $6 \leqslant g(x) \leqslant 5$			
	[1, 5]			B1
	[1, 5) or (1, 5] or (1, 5) or 1 – 5 or 8			B0
	$1 \leqslant g(x) \leqslant 5$ in working with list of integration	gers on ans	wer line	B1
	Only a list of integers			В0

Q	Answer	Mark	Comments
	x = -2	B1	
11	Additional Guidance		
	Alternative method 1		
	$\frac{1}{2} \times \frac{4}{3} \times \pi \times (6a)^3$		oe eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times \left(\frac{12a}{2}\right)^3$
	or $\frac{2}{3} \times \pi \times 216a^3$	M1	or $\frac{2}{3} \times \pi \times (6a)^3$
	or 144π a^3		
12	$a^3 = \frac{486\pi}{144\pi}$ or $a^3 = \frac{27}{8}$		oe equation of form a^3 = or calculation allow $(6a)^3$ = 729 or $6a$ = 9
	or $a^3 = 486 \div \left(\frac{2}{3} \times 6^3\right)$	A1	
	or $a^3 = 3.375$		

Α1

SC1 answer 0.75 oe

or answer 1.19... or answer 4.95...

or $\sqrt[3]{3.375}$

 $\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5

Q	Answer	Mark	Comments		
	Alternative method 2				
	$r^{3} = \frac{486\pi}{\frac{2}{3}\pi}$ or $r^{3} = 729$ or $\sqrt[3]{729}$ or 9	M1	oe equation of form $r^3 =$ or calculation		
12 cont	$6a = \sqrt[3]{\frac{486\pi}{\frac{2}{3}\pi}}$ or $6a = 9$ or $9 \div 6$	A1	oe equation or calculation allow $(6a)^3 = 729$		
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	or $1\frac{1}{2}$ or 1.5	SC1 answer 0.75 oe or answer 1.19 or answer 4.95		
	Ad	uidance			
	Allow recovery of missing brackets				
	Allow use of $\pi = [3.14, 3.142]$				

Q	Answer	Mark	Comments	
	$x(1-x^2)$ or $2x(1+x)$ or $x(2+2x)$ or $\frac{1-x^2}{2+2x}$	M1	implied by 2nd M1 oe factorisation eg $-x(x^2 - 1)$	
	$x(1+x)(1-x)$ or $\frac{x(1-x^2)}{2x(1+x)}$ or $\frac{1-x^2}{2(1+x)}$ or $\frac{(1+x)(1-x)}{2+2x}$	M1dep	implies M2 oe factorisation eg $-x(x + 1)(x - 1)$	
13	$\frac{x(1+x)(1-x)}{2x(1+x)}$ or $\frac{(1+x)(1-x)}{2(1+x)}$ or $\frac{x(1-x)}{2x}$	M1dep	implies M3 oe factorisation $eg \frac{-x(x+1)(x-1)}{2x(1+x)}$	
	$\frac{1-x}{2}$ with M3 seen	A1	oe simplest form $eg \frac{1}{2}(1-x) \text{ or } \frac{1}{2} - \frac{1}{2}x \text{ or }$	$\frac{-x+1}{2}$
	Ac	lditional G	uidance	
	$\frac{x(1+x)(1-x)}{2x(1+x)} \text{ or } \frac{(1+x)(1-x)}{2(1+x)} \text{ or } \frac{x(1-x)}{2x}$ is sufficient working			M3
	$2(x + x^2)$ with no further work			MO
	$\frac{x-1}{-2}$ with M3 seen or $-\frac{1}{2}(x-1)$ with M3 seen or $\frac{-(x-1)}{2}$ with M3 seen			M3A1

Q	Answer	Mark	Comments	
	$a^{2} + (3a)^{2} - 2 \times a \times 3a \times \cos 120$ or $\cos 120 = \frac{a^{2} + (3a)^{2} - b^{2}}{2 \times a \times 3a}$	M1	oe eg may substitute cos 1: may be seen in a square roo	
	$b^{2} = a^{2} + 9a^{2} + 3a^{2}$ or $b^{2} = 13a^{2}$ or $-b^{2} = -13a^{2}$ or $b = \sqrt{13} a$	A1	oe equation of the form $b^2 = \text{ or } b = \text{ with brackets expanded and terms fully simplified}$ $\cos 120 = -0.5 \text{ substituted}$	
14	13:1	A1	SC1 7:1	
	Ad	ditional G	uidance	
	Allow recovery of missing brackets			
	$a^2 = a^2 + (3a)^2 - 2 \times a \times 3a \times \cos 120$ not recovered			M1M0A0
	$b^2 = 10a^2 - 3a^2$			M1A0A0
	$b^2 = 10a^2 + 3a^2$			M1A1A0

Q	Answer	Mark	Comments
	Alternative method 1		
	$3mp = 3(2p+1) + p + 5$ or $(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ or $(m =) \frac{6p+3+p+5}{3p}$	M1	oe fractions eliminated or common denominator $eg (m =) \frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ or $(m =) \frac{6p^2 + 3p + p^2 + 5p}{3p^2}$
15	3mp = 6p + 3 + p + 5 or $3mp = 7p + 8$	M1dep	oe brackets expanded and fractions eliminated eg $3mp^2 = 7p^2 + 8p$ implies M2
	3mp - 7p = 8 or $\frac{8}{3m - 7}$ or $\frac{-8}{7 - 3m}$	M1dep	oe terms collected $eg \ p(3m-7) = 8 \ or \ 7p - 3mp = -8$ implies M3
	$p = \frac{8}{3m - 7}$ or $p = \frac{-8}{7 - 3m}$	A1	oe eg $\frac{8}{3m-7} = p$

Q	Answer	Mark	Comments
	Alternative method 2		
	$(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ or $(m =) \frac{6p+3+p+5}{3p}$	M1	oe common denominator eg $(m =) \frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ or $(m =) \frac{6p^2 + 3p + p^2 + 5p}{3p^2}$
	$m = \frac{7p + 8}{3p}$ and $m = \frac{7}{3} + \frac{8}{3p}$ and $m - \frac{7}{3} = \frac{8}{3p}$	M1dep	simplifies numerator and isolates term in p eg $m = \frac{7p^2 + 8p}{3p^2}$ and $m = \frac{7}{3} + \frac{8}{3p}$ and $m - \frac{7}{3} = \frac{8}{3p}$ implies M2
15 cont	$\frac{3m-7}{3} = \frac{8}{3p}$	M1dep	converts $m - \frac{7}{3}$ to a single fraction implies M3
	$p = \frac{8}{3m - 7}$ or $p = \frac{-8}{7 - 3m}$	A1	$oe eg \frac{8}{3m-7} = p$
	Ac	Iditional G	uidance
	$p = \frac{8}{3m - 7}$ in working but $\frac{8}{3m - 7}$ on a	nswer line	M3A1
	Allow recovery of missing brackets		
	$p = \frac{8}{3m - 7}$ followed by incorrect further		МЗАО
	Allow equivalences for A1 eg $p = \frac{\frac{8}{3}}{\frac{3m-3}{3}}$	M3A1	
	Do not regard eg $3m(p) = 7p + 8$ as h	aving unexp	panded brackets M1M1dep

Q	Answer	Mark	Comments	
	$\frac{8-5}{2} = \sqrt{1-a} \text{ or } \frac{3}{2} = \sqrt{1-a}$ or $3^2 = 2^2(1-a) \text{ or } 9 = 4(1-a)$	M1		
16	$1 - a = \left(\frac{3}{2}\right)^2$ or $1 - a = \frac{9}{4}$ or $9 = 4 - 4a$ or $\frac{4 - 9}{4}$	M1dep	oe equation or calculation $eg \ 1 - a = \left(\frac{8 - 5}{2}\right)^{2}$ or $1 - a = 2.25$ or $\frac{9 - 4}{-4}$ implies M2	
	$-\frac{5}{4}$ or -1.25 or $-1\frac{1}{4}$	A1		
	Additional Guidance			
	$3 = 2\sqrt{1 - a}$			MO
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments
	$x^2 + 3x + x + 3$ with three terms correct or $x^2 + 4x + k$ where k is a non-zero constant	M1	oe expansion attempt of one pair of brackets eg1 $x^2 + 4x + 3x + 12$ with three terms correct or $x^2 + 7x + k$ where k is a non-zero constant eg2 $x^2 + 4x + x + 4$ with three terms correct or $x^2 + 5x + k$ where k is a non-zero constant
17	$x^{3} + 3x^{2} + x^{2} + 3x$ or $x^{3} + 4x^{2} + 3x$ or $4x^{2} + 12x + 4x + 12$ or $4x^{2} + 16x + 12$	M1dep	attempt at a full expansion with correct multiplication of their 3 or 4 terms by one of the terms in the remaining bracket oe eg $x^3 + 4x^2 + 3x^2 + 12x \text{ or } x^3 + 7x^2 + 12x$ or $x^2 + 4x + 3x + 12$ or $x^2 + 7x + 12$ $(x^2 + 7x + 12 \text{ must be from an attempt at a full expansion})$ or $x^3 + 4x^2 + x^2 + 4x \text{ or } x^3 + 5x^2 + 4x$ or $3x^2 + 12x + 3x + 12$ or $3x^2 + 15x + 12$
	$x^3 + 8x^2 + 19x + 12$	A1	fully correct expansion allow if terms not collected eg $x^3 + 3x^2 + x^2 + 3x + 4x^2 + 12x + 4x + 12$ or $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$
	$x^2 + 8x + 12$	A1ft	ft M2A0 full simplification of their $(x^3 + 8x^2 + 19x + 12) - x^3 - 7x^2 - 11x$ their $(x^3 + 8x^2 + 19x + 12)$ must be a cubic
	$x^{2} + 8x + 12$ and (x + 6)(x + 2) or $(x + 2)(x + 6)$	A1	oe product of brackets

Q	Answer	Mark	Comments

	Additional Guidance	
	1st M1 Do not allow omissions or extras	
	eg1 $x^2 + 3x + 3$	MO
	eg2 $x^2 + 3x + x + 3 + x^2$	MO
	For the first 2 marks terms may be seen in a grid	
	If 1st A1 has been awarded with terms not collected, A1ft can still be awarded using their simplified cubic	
	eg $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$	M1M1A1
	$= x^3 + 8x^2 + 18x + 12$	
	$x^3 + 8x^2 + 18x + 12 - x^3 - 7x^2 - 11x$	
17 cont	$=x^2 + 7x + 12$	A1ftA0
	First A1 may be seen embedded	
	eg $x^3 + 8x^2 + 19x + 12 - x^3 + 7x^2 - 11x$	M1M1A1
	If an attempt at the expansion of all three brackets in one go is made it must be fully correct to gain M2A1, otherwise M0M0A0	
	eg $x^2 + 3x + x + 3 + x^2 + 4x$	M0M0A0
	Allow recovery of missing brackets when subtracting $x^3 + 7x^2 + 11x$ from their cubic	
	For final A1 allow $x^2 + 8x + 12$ and $a = 6$ $b = 2$	
	or $x^2 + 8x + 12$ and $a = 2$ $b = 6$	
	Ignore equating to zero and/or any 'solving' of an equation	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$x-5 = \frac{k}{2}$ or $x-5 = -\frac{k}{2}$ or $2(x-5) = k$ or $2x - 10 = k$ or $2(x-5) = -k$ or $2x - 10 = -k$	M1	oe linear equation $eg \ x - 5 = \sqrt{\frac{k^2}{4}} or \ x = \frac{k}{2} + 5$ or $\sqrt{4}(x - 5) = \sqrt{k^2}$	
	$x-5 = \frac{k}{2}$ and $x-5 = -\frac{k}{2}$ or 2(x-5) = k and $2(x-5) = -kor2x-10 = k$ and $2x-10 = -k$	A1	oe eg $x - 5 = \pm \frac{k}{2}$ square root(s) must be processed implied by final A1	
18	$\frac{k}{2}$ +5 and $-\frac{k}{2}$ +5	A1	oe simplest form $eg \ \frac{10+k}{2} \ and \ \frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5 \pm 0.5k$	
	Alternative method 2			
	$4x^2 - 40x + 100 - k^2 (= 0)$	M1	expands and collects terms	
	$\frac{40 \pm \sqrt{(-40)^2 - 4 \times 4 \times (100 - k^2)}}{2 \times 4}$	A1	oe eg $\frac{40 \pm \sqrt{16k^2}}{8}$ or $\frac{40 \pm 4k}{8}$ implied by final A1	
	$\frac{k}{2}$ +5 and $-\frac{k}{2}$ +5	A1	oe simplest form $eg \ \frac{10+k}{2} \ and \ \frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5 \pm 0.5k$	
	Ad	ditional G	uidance	
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments	
19(a)	$\sqrt{(3x)^2 + (4x)^2} = (5x)$ or $\sqrt{9x^2 + 16x^2} = (5x)$ or $(3x)^2 + (4x)^2 = (5x)^2$ or $3x, 4x, 5x \text{ triangle}$	B1	may be seen in stages eg $9x^2 + 16x^2 = 25x^2$ and $\sqrt{25x^2}$ (= 5x)	
	Additional Guidance			В0
	Only $\sqrt{25x^2}$ (= 5x) seen Pythagorean triple 3x, 4x, 5x			В1
	Pythagorean triple 3, 4, 5			B0
	Missing brackets can not be recovered			
	eg1 $\sqrt{3x^2 + 4x^2} = 5x$			В0
	eg2 $3x^2 + 4x^2 = 9x^2 + 16x^2 = 25x^2$ and $\sqrt{25x^2}$ (= 5x)			В0
	Incorrect statements are B0 (mark the f			
	eg1 $9x^2 + 16x^2 = 25x^2 = \sqrt{25x^2}$ (= 5x)			В0
	eg2 $9x^2 + 16x^2 = 25x^2$ $\sqrt{25}x^2 = 5x$			В0
	eg3 $\sqrt{(3x)^2 + (4x)^2} = 5x$ and $3x + 4x = 5x$			В0
	Only uses values for x			В0

	Mark	Comments					
Alternative method 1							
$4x \times 3x \text{ or } 6x^2$	M1	oe may be seen on the diagram					
$(2.5x)^{2} - (2.5x)^{2}$ $(2.25x^{2} - 6.25x^{2})$ $(2.25x^{2} - 6.25x^{2})$	M1	oe eg $(6.5x)^2 - \left(\frac{5x}{2}\right)^2$					
$\frac{1}{x^2} = \frac{1}{x^2} - \frac{1}{x^2}$	M1dep	dep on 2nd M1 may be seen on the diagram					
$5x \times \text{their } 6x \text{ or } 15x^2$	M1dep	oe dep on 2nd and 3rd M1					
2	A1	allow $p = 21$ if areas $6x^2$ and $15x^2$ seen					
Alternative method 2							
$4x \times 3x \text{ or } 6x^2$	M1	oe may be seen on the diagram					
$ACD = \frac{2.5x}{6.5x}$ $\cos ACD = \frac{5}{13}$	M1	oe					
$\frac{2.5x}{6.5x}$ 7(.3) or 67.4	M1dep	oe $eg cos^{-1} \frac{(6.5x)^2 + (5x)^2 - (6.5x)^2}{2 \times 6.5x \times 5x}$					
		dep on 2nd M1					
$5x \times 6.5x \times \sin \text{ their } 67(.3)$	M1dep on 2nd and 3rd M1						
2	A1	allow $p = 21$ if areas $6x^2$ and $15x^2$ seen					
	$0^{2} - (2.5x)^{2}$ $2.25x^{2} - 6.25x^{2}$ $5x^{2}$ $5x \times \text{their } 6x \text{ or } 15x^{2}$ native method 2 $4x \times 3x \text{ or } 6x^{2}$ $ACD = \frac{2.5x}{6.5x}$ $ACD = \frac{5}{13}$ $1 \frac{2.5x}{6.5x}$ $7(.3) \text{ or } 67.4$ $5x \times 6.5x \times \text{ sin their } 67(.3)$	$4x \times 3x \text{ or } 6x^2$ $y^2 - (2.5x)^2$ $2.25x^2 - 6.25x^2$ $3x^2$ M1 $5x^2$ M1 M1 M1 M1 M1 M1 M1 M1 M1 M					

Q	Answer	Mark	Comments				
	Alternative method 3						
-	$0.5 \times 4x \times 3x$ or $6x^2$	M1	oe may be seen on the diagram				
	$(5x)^2 = (6.5x)^2 + (6.5x)^2$ $-2 \times 6.5x \times 6.5x \times \cos D$	M1	oe				
	$\cos^{-1} \frac{(6.5x)^2 + (6.5x)^2 - (5x)^2}{2 \times 6.5x \times 6.5x}$		oe dep on 2nd M1				
	or $\cos^{-1} \frac{119}{169}$	M1dep					
	or 45(.2)						
	$0.5 \times 6.5x \times 6.5x \times \text{sin their } 45(.2)$ or $15x^2$	M1dep	oe dep on 2nd and 3rd M1				
19(b) cont	21 <i>x</i> ²	A1	allow $p = 21$ if areas $6x^2$ and $15x^2$ seen				
	Additional Guidance						
	Allow recovery of algebra eg1 $0.5 \times 4 \times 3 = 6$ is 1st M0 but if reco						
	eg2 Alt 1 $\sqrt{42.25}$ - 6.25 = 6 is 2nd M0 6x scores 2nd M1 and 3rd M1						
	Do not allow final mark if an incorrect a eg do not allow answer $21x^2$ if their two						
	Answer $21x^2$ with no incorrect working eg fully correct working with numbers a	5 marks					
	Allow recovery of missing brackets						
	Choose the scheme that favours the str						
	eg1 $0.5 \times 4 \times 3 = 6$ is 1st M0 but if recovery eg2 Alt 1 $\sqrt{42.25 - 6.25} = 6$ is 2nd M0 $6x$ scores 2nd M1 and 3rd M1 Do not allow final mark if an incorrect a eg do not allow answer $21x^2$ if their two Answer $21x^2$ with no incorrect working eg fully correct working with numbers a Allow recovery of missing brackets	5 ma					

Q	Answer	Mark	Comments
	Alternative method 1		
	Full method leading to angle $BCD = 180 - 2x$	M1	eg angle $CFE = x$ and angle $FCE = 180 - 2x$ and angle $BCD = 180 - 2x$
	Full reasoning for their method	A 1	eg (base angles of) isosceles (triangle are equal) and (sum of) angles in a triangle (is 180) and (vertically) opposite angles
20(a)	angle $BAD = 2x$ and (opposite angles of) cyclic quadrilateral (add to 180)	A1	must see M1
	Alternative method 2 Working ou	it angle <i>D</i> (CF using angle at centre
	angle $DCF = 2x$	M1	
	angle at centre (is double angle at circumference)	A1	
	Full method leading to angle $BAD = 2x$ and full reasoning for their method	A1	must see M1 eg angle $BCD = 180 - 2x$ and angle $BAD = 2x$ and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)

Mark scheme and Additional Guidance continue on the next three pages

Q	Answer	Mark	Comments
---	--------	------	----------

	Alternative method 3 Working ou	t angle <i>D</i>	CF not using angle at centre
	Full method leading to angle $DCF = 2x$	M1	eg angle $CFE = x$ and angle $DCF = 2x$
20(a) cont	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and exterior angle (of triangle is sum of interior opposite angles)
	Full method leading to angle $BAD = 2x$ and full reasoning for their method	A1	must see M1 eg angle $BCD = 180 - 2x$ and angle $BAD = 2x$ and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)

Mark scheme and Additional Guidance continue on the next two pages

Q	Answer	Mark	Comments
	Alternative method 4		
	Full method leading to angle $DFC = 90 - x$ and angle $ABC = 90 - x$	M1	eg angle $CFE = x$ and angle $DFE = 90$ and angle $DFC = 90 - x$ and angle $CDF = 90 - x$ and angle $ADC = 90 + x$ and angle $ABC = 90 - x$
20(a) cont	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and (angle in a) semicircle (is 90) and (sum of) angles in a triangle (is 180) and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)
	angle $BAD = 2x$ and (sum of) angles in a triangle (is 180)	A1	must see M1

Additional Guidance is on the next page

Q	Answer	Mark	Comments

	Additional Guidance	
	It is possible to score M1A1A0 or M1A0A1	
	Do not award any marks from angles on the diagram	
	Angles must be stated unambiguously eg condone angle <i>B</i> but do not condone angle <i>D</i>	
	'angle' may be missing or replaced by a symbol - mark intention	
	angle CFE may be seen as angle EFC or angle BFE etc	
20(5)	For (base angles of) isosceles (triangle are equal) allow radii (are equal)	
20(a) cont	For (sum of) angles in a triangle (is 180) allow triangle is 180	
	Use judgement when considering wording of reasons and allow abbreviations	
	Alt 2 Final A1 reason may be	
	exterior angle of cyclic quadrilateral (equals interior opposite angle)	
	Choose the scheme that favours the student	
	Ignore angles that are not needed for their scheme even if incorrect	
	Allow recovery of missing brackets	
	Starting with angle $BAD = 2x$	M0A0A0

Q	Answer	Mark	Comments
	30		B1 correct equation or calculation
	eç	eg $90 + 2x + x = 180$	
		B2	or $90 - x = 2x$
		B2	or $3x = 90$
20(b)			or $6x = 180$
20(5)			or 90 ÷ 3
	Additional Guidance		
	Ignore any expressions for angles and any other calculated angles		
	Ignore any reasons		

Q	Answer	Mark	Comments
	$8^{2} + 12^{2}$ or $64 + 144$ or 208 or $8^{2} + 12^{2} + 15^{2}$ or $64 + 144 + 225$ or 433	M1	HC ² or CE ² implied by 2nd M1
	$\sqrt{8^2 + 12^2}$ or $\sqrt{208}$ or $4\sqrt{13}$ or 14.4 or $\sqrt{8^2 + 12^2 + 15^2}$ or $\sqrt{433}$ or 20.8	M1dep	oe may be on diagram fully correct trigonometry method leading to 14.4 or 20.8 can score M2 eg $8 \div \sin \left(\tan^{-1} \frac{8}{12} \right)$ or $8 \div \sin \left(\tan^{-1} \frac{8}{\sqrt{12^2 + 15^2}} \right)$
21	$\tan x = \frac{15}{\sqrt{8^2 + 12^2}}$ or $\cos x = \frac{\sqrt{8^2 + 12^2}}{\sqrt{8^2 + 12^2 + 15^2}}$ or $\sin x = \frac{15}{\sqrt{8^2 + 12^2 + 15^2}}$	M1dep	oe eg tan $x = [1.04, 1.042]$ or or $\cos x = [0.69, 0.6934]$ or $\sin x = [0.72, 0.7212]$ or $90 - \tan^{-1} \frac{\sqrt{8^2 + 12^2}}{15}$ dep on M2 any letter
	46(.1)	A1	
	Ad	ditional G	Guidance
	3rd M1 If using sine rule or cosine rule, must be $eg \cos x = \frac{20.8^2 + 14.4^2 - 15^2}{2 \times 20.8 \times 14.4}$ (or		orm $\cos x = \text{ or } \sin x =$ [0.69, 0.6934])
	3rd M1 Condone $\tan = \frac{15}{\sqrt{8^2 + 12^2}}$ e	МЗ	
	Allow the first 2 M marks even if not su	y used	
	Allow recovery of missing brackets		

Q Answer Mark Comments	
------------------------	--

	Alternative metho	od 1		
22(a)	$2\sin^{2}x - 1 + 1 - \sin^{2}x$ or $2\sin^{2}x - (\sin^{2}x + \cos^{2}x)$ or $2\sin^{2}x - \sin^{2}x - \cos^{2}x$ or $\sin^{2}x - \cos^{2}x + \cos^{2}x$ or $1 + \sin^{2}x - 1$	$\cos^2 x) + \cos^2 x$ $s^2 x + \cos^2 x$	M1	use of $\sin^2 x + \cos^2 x = 1$ in numerator ignore any denominator
	$\frac{\sin^2 x}{\sin x \cos x}$ with M1 seen	$\frac{\sin^2 x}{\tan x \cos^2 x}$ with M1 seen	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or $\frac{\tan^2 x}{\tan x}$
	$\frac{\sin x}{\cos x}$ and $\tan x$ with M2 seen	$\frac{\tan^2 x}{\tan x} \text{ and } \tan x$ with M2 seen	A1	SC3 equates given expression to tan x and cross multiplies to show equivalence with full working shown

Mark scheme and Additional Guidance continue on the next two pages

Q	An	swer	Mark	Comments	
	Alternative metho	od 2			
	$2(1 - \cos^2 x) - 1 + \cos^2 x$ or $2 - 2\cos^2 x - 1 + \cos^2 x$		M1	use of $\sin^2 x + \cos^2 x = 1$ in numerator ignore any denominator	
	$\frac{1-\cos^2 x}{\sin x \cos x}$ and $\frac{\sin^2 x}{\sin x \cos x}$ with M1 seen	$\frac{1-\cos^2 x}{\sin x \cos x}$ and $\frac{\sin^2 x}{\tan x \cos^2 x}$ with M1 seen	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan^2 x}{\tan x}$	
22(a) cont	$\frac{\sin x}{\cos x} \text{ and } \tan x$ with M2 seen	$\frac{\tan^2 x}{\tan x} \text{ and } \tan x$ with M2 seen	A1	SC3 equates given expression to tan x and cross multiplies to show equivalence with full working shown	
	Alternative method 3				
	$\frac{2\sin x}{\cos x} - \frac{\sin^2 x}{\sin x \cos}$	x	M1	from $\frac{2\sin^2 x}{\sin x \cos x} - \frac{1 - \cos^2 x}{\sin x \cos x}$	
	$2\tan x - \frac{\sin^2 x}{\sin x \cos x}$	- x		simplification to one step from $2\tan x - \tan x$	
	or $ \frac{2\sin x}{\cos x} - \frac{\sin x}{\cos x} $ with M1 seen		M1dep		
	2tan x - tan x and with M2 seen	tan x	A1	SC3 equates given expression to tan x and cross multiplies to show equivalence with full working shown	

Additional Guidance is on the next page

Q Answei	Mark	Comments
----------	------	----------

	Additional Guidance					
	Equating given expression to $\tan x$ and cross multiplying can score SC3 or M1M0A0					
	eg1 Alt 1					
	$\frac{2\sin^2 x - 1 + \cos^2 x}{\sin x \cos x} = \tan x$					
	$2\sin^2 x - 1 + \cos^2 x = \tan x \sin x \cos x$					
	$2\sin^2 x - 1 + 1 - \sin^2 x = \tan x \sin x \cos x \qquad \text{(scores M1 here for LHS)}$	M1M0A0				
22(a) cont	$\frac{2\sin^2 x - 1 + \cos^2 x}{\sin x \cos x} = \tan x$ $2\sin^2 x - 1 + \cos^2 x = \tan x \sin x \cos x$ $2\sin^2 x - 1 + 1 - \sin^2 x = \tan x \sin x \cos x$					
	$\sin^2 x = \tan x \sin x \cos x$ $\sin^2 x = \frac{\sin x}{\cos x} \sin x \cos x$	200				
	$\sin^2 x = \sin^2 x$	SC3				
	Use of $\sin x = \frac{\text{opp}}{\text{hyp}}$ etc	M0M0A0				
	Allow sin or s for sin x etc					
	Condone $\sin x^2$ for $\sin^2 x$ etc					
	Alts 1 and 2					
	For A1 $\frac{\sin x}{\cos x}$ is implied by $\frac{\sin^2 x}{\sin x \cos x}$ with cancelling shown					

Q	Answer	Mark	Comments	;	
	135 and 315 with no other solutions [0, 360] B2 B1 135 with no other solution or 315 with no other solution SC1 135 and 315 with on solution [0, 360] Additional Guidance				
	Mark the answer line unless blank		ardarioo		
	eg 135 and 315 in working with 135 on answer line				
	-45 and 135 and 315		B2		
22(b)	-45 and 135			B1	
	Ignore incorrect solutions outside the ra	B2			
	135 and 225 and 315		SC1		
	Both answers embedded ie tan 135 tan 315				
	0 and 135 and 225 and 315		В0		
	45 and 135		В0		
	225 and 315				

	(1, -3)	B1		
23(a)	23(a) Additional Guidance			
	Mark intention eg condone 1, -3			B1

Q	Answer	Mark	Comments	i
	Alternative method 1			
	$-3 + \sqrt{25}$ (= 2) or -3 + 5 (= 2)	B1	oe eg 5 - 3 (= 2) or 2 + 3	3 = 5
	Alternative method 2			
	$(y + 3)^2 = 25$ and $y = 2$ or		oe eg $(1-1)^2 + (y+3)^2 = 25$	and $y = 2$
23(b)	y + 3 = 5 and $y = 2$	B1		
	$(2+3)^2 = 25$			
	Ad	ditional G	uidance	
	(1, -3) + (0, 5) = (1, 2) so $y = 2$			В0
	Allow -3 + radius of 5			B1
	2 = 0x + c			
	c = 2 so $y = 2$			В0

Q	Answer	Mark	Comments			
	Alternative method 1 Using equation PR					
	$\frac{-7 - \text{their } -3}{4 - \text{their } 1} \text{or } -\frac{4}{3}$	M1	oe grad <i>PC</i> their –3 and their 1 from (a)			
	$-1 \div \text{their} -\frac{4}{3} \text{ or } \frac{3}{4}$	M1	oe grad PR their $-\frac{4}{3}$ must be a value			
	$27 = \text{their } \frac{3}{4}(x - 4)$		(gradient $PR = \frac{3}{4}$ is M2 oe equation PR with $y = 2$ substituted			
	4` ′	M1dep	eg $2 = \frac{3}{4}x - 10$ dep on 2nd M1			
23(c)	16	A1ft	only ft their -3 and their 1 from (a)			
	Alternative method 2 Using $RC^2 = CP^2 + PR^2$ or $PR^2 = QR^2$ with $R(x, 2)$					
	$(x - \text{their 1})^2 + (2 - \text{their } - 3)^2$ = $(2 - \text{their } -3)^2 + (x - 4)^2 + (27)^2$	M1	oe eg $(x-1)^2 = (x-4)^2 + (2-7)^2$ their –3 and their 1 from (a)			
	$x^{2} - 2x + 1 + 25$ $= 25 + x^{2} - 8x + 16 + 81$	M1dep	oe brackets expanded			
	96 = 6x or $96 \div 6$	M1dep	oe linear equation or calculation dep on M2			
	16	A1ft	only ft their -3 and their 1 from (a)			

Mark scheme and Additional Guidance continue on the next three pages

Q	Answer	Mark	Comments				
	Alternative method 3 Using equation CR						
	$\frac{-7-2}{4-\text{their 1}}$ or -3	M1	oe grad PQ their 1 from (a)				
	$-1 \div \text{their} -3 \text{ or } \frac{1}{3}$	M1	oe grad CR their –3 must be a value (gradient $CR = \frac{1}{3}$ is M2				
	$2 - \text{their } -3 = \text{their } \frac{1}{3} (x - \text{their } 1)$	M1dep	oe equation <i>CR</i> with $y = 2$ substituted eg $2 = \frac{1}{3}x - \frac{10}{3}$ dep on 2nd M1				
	16	A1ft	only ft their –3 and their 1 from (a)				
23(c) cont	Alternative method 4 Using equation MR where M is the midpoint of PQ						
	$\frac{-7-2}{4-\text{their 1}}$ or -3	M1	oe grad <i>PQ</i> their 1 from (a)				
	$-1 \div \text{their} -3 \text{ or } \frac{1}{3}$	M1	oe grad MR their –3 must be a value (gradient $MR = \frac{1}{3}$ is M2				
	$\left(\frac{4 + \text{their 1}}{2}, \frac{-7 + 2}{2}\right)$ or $(2.5, -2.5)$ and $2 - \text{their } -2.5 = \text{their } \frac{1}{3}(x - \text{their } 2.5)$	M1dep	oe midpoint of PQ and equation MR with $y = 2$ substituted eg $2 = \frac{1}{3}x - \frac{10}{3}$ dep on 2nd M1				
	16	A1ft	only ft their 1 from (a)				

Mark scheme and Additional Guidance continue on the next two pages

Q	Answer	Mark	Comments		
	Alternative method 5 Using equat	ion <i>MC</i> wh	ere <i>M</i> is the midpoint of <i>PQ</i>		
	$\left(\frac{4 + \text{their 1}}{2}, \frac{-7 + 2}{2}\right)$ or $(2.5, -2.5)$	M1	oe midpoint of PQ their 1 from (a)		
	$\frac{\text{their} - 3 - \text{their} - 2.5}{\text{their } 1 - \text{their } 2.5} \text{or} \frac{1}{3}$	M1dep	oe grad MC		
	2 - their -3 = their $\frac{1}{3}(x - \text{their 1})$ or 2 - their -2.5 = their $\frac{1}{3}(x - \text{their 2.5})$	M1dep	oe equation <i>MC</i> with $y = 2$ substituted eg $2 = \frac{1}{3}x - \frac{10}{3}$ dep on M2		
23(c)	16	A1ft	only ft their -3 and their 1 from (a)		
cont	Alternative method 6 Using trigonometry where M is the midpoint of PQ				
	$(QM =) \frac{1}{2} \sqrt{(4 - \text{their 1})^2 + (-7 - 2)^2}$ or $\frac{1}{2} \sqrt{90}$ or 4.74	M1			
	$\sin^{-1}\left(\frac{\text{their 4.74}}{5}\right)$ or (angle QCM=) 71.5 or 71.6	M1dep	oe angle <i>QCM</i>		
	tan (their 71.5) = $\frac{x - \text{their 1}}{5}$	M1dep	using triangle QCR		
	16	A1ft	only ft their 1 from (a)		

Additional Guidance is on the next page

Q	Answer	Mark	Comments				
	Additional Guidance						
	Allow (16,) to imply answer 16 Alt $1 - \frac{4}{3}x$ is M0 unless recovered						
23(c)							
cont	(a) (1, -2)						
grad $PC = -\frac{5}{3}$ grad $PR = \frac{3}{5}$							
	Answer 19 (3rd M1 can be implied by A1ft answer) M1A1						
	$3x^4$ or $4x^3$	M1	oe eg $5 \times \frac{3}{5} x^{5-1}$				
	$3x^4 + 4x^3$	A1					
	$x^{3}(3x + 4) (= 0)$ allow partial factorisation of their $3x^{4} + 4$ if at least x is taken as a factor						
			ft their two terms if M1 scored				

24

 $x^3(3x + 4) (= 0)$

 $(x =) 0 \text{ and } (x =) -\frac{4}{3}$

with no other solutions

and

Additional Guidance					
$3x^4 + 4x^3 = 0$				M1A1	
$x = 0 \text{ and } x = -\frac{4}{3}$				M0A0	
Condone $y = 3x^4 + 4x^3$				M1A1	
Ignore higher derivatives					
Condone (0,) and $\left(-\frac{4}{3},\right)$ for $(x = \frac{1}{3})$) 0 and (a	$c =) -\frac{4}{3}$			
Allow -1.33 for $-\frac{4}{3}$ (ignore any incompared in the second context).	rect conve	ersion attempt af	$(ter - \frac{4}{3} seen)$		

Α1

allow partial factorisation if at least x is

taken as a factor

Q	Answer	Mark	Comments		
	Alternative method 1	T			
	$(-c)^3 - 10(-c) - c (= 0)$		oe		
	or $-c^3 + 10c - c = 0$	M1			
	or	IVII			
	$-c^3 + 9c (= 0)$				
	$c(9-c^2) (= 0)$		oe factorised expression or d	luadratic	
	or		equation		
	c(3+c)(3-c) (= 0)	M1dep			
	or				
	$c^2 = 9$				
	3 with no other value(s)	A1	SC2 answer 3 with one or b –3 and 0 and no other value	oth of	
25	Alternative method 2				
	$(x+c)(x^2-cx-1)$	M1			
	$-1 - c^2 = -10$	M1dep	oe quadratic equation		
	3 with no other value(s)	A1	SC2 answer 3 with one or both of		
		Ai	-3 and 0 and no other value		
	Additional Guidance				
	$(-3)^3 - 10(-3) - 3 = 0$ and Answer	3 (no pa	art marks) M2A1		
	$(-3)^3 - 10(-3)3 = 0$ and Answe	$(x)^3 - 10(-3) - 3 = 0$ and Answer 3		Zero	
	$3^3 - 10(3) - 3 = 0$ and Answer 3			Zero	
	Answer 3 with no incorrect working			M2A1	
	Allow recovery of missing brackets				

Comments

Mark

Q

Answer

		<u> </u>			
	I	•			
	Alternative method 1				
	$(x+3)^2$	M1			
	$(x + 3)^2 - 3^2 - a$ or $(x + 3)^2 - 3^2 \ge a$ or $(x + 3)^2 \ge a + 3^2$	M1dep	oe expression or inequality eg $(x + 3)^2 \ge 9 + a$ allow \ge to be any inequality symbol or = eg allow $(x + 3)^2 - 9 = a$ implies M2		
26	$-3^{2} - a \geqslant 0$ or $-3^{2} - a \geqslant 0$	M1dep	oe inequality eg $-9 - a \ge 0$ or $-9 - a > 0$ or $a < -9$ implies M3		
	$a \leqslant -9 \text{ or } -9 \geqslant a$	A1	SC1 $x^2 + 6x - a \ge 0$ oe inequality (may be seen in working lines)		
	Alternative method 2				
	2x + 6 = 0	M1	must have = 0		
	(minimum at) $x = -3$	M1dep	implies M2 $x = -3$ must be the only value or be clearly chosen		
	$(-3)^2 + 6 \times (-3) - a \ge 0$ or $(-3)^2 + 6 \times (-3) - a > 0$	M1dep	oe inequality eg $9-18-a\geqslant 0$ or $9-18-a>0$ or $a<-9$ implies M3		
	$a \leqslant -9$ or $-9 \geqslant a$	A1	SC1 $x^2 + 6x - a \ge 0$ oe inequality (may be seen in working lines)		

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments	
	Alternative method 3			
	$6^2 - 4 \times 1 \times -a$		$b^2 - 4ac$	
		M1	must be selected if seen in quadratic formula	
	$6^2 - 4 \times 1 \times -a \leqslant 0$		oe inequality	
	or	M1dep	implies M2	
	$6^2 - 4 \times 1 \times -a < 0$			
	36 + 4 <i>a</i> ≤ 0		oe inequality eg $4a \leqslant -36$	
26	or	M1dep	implies M3	
cont	36 + 4 <i>a</i> < 0			
	$a \leqslant -9 \text{ or } -9 \geqslant a$	A 4	SC1 $x^2 + 6x - a \ge 0$ oe inequality	
		A1	(may be seen in working lines)	
	Additional Guidance			
	Alt 1			
	2nd M1 Any inequality symbol or = allowed			
	3rd M1 Only the inequality symbols shown are allowed (do not allow =)			
	Allow $(x + 3)(x + 3)$ for $(x + 3)^2$			
<u> </u>				

Q	Answer	Mark	Comments		
	Alternative method 1				
27	Shows substitution of a value of $x < -2$ into $\frac{dy}{dx}$ and shows substitution of a value of $x > -2$ into $\frac{dy}{dx}$	M1	eg $(-3+2)^{6} + (-3+2)^{4}$ and $(-1+2)^{6} + (-1+2)^{4}$ allow $(-1)^{6} + (-1)^{4} \text{ with } x = -3 \text{ stated}$ and $(1)^{6} + (1)^{4} \text{ with } x = -1 \text{ stated}$		
	Evaluates both correctly or states that each is positive with M1 seen	M1dep	eg $(-3+2)^{6} + (-3+2)^{4} = 2$ and $(-1+2)^{6} + (-1+2)^{4} = 2$ allow $(-1)^{6} + (-1)^{4} = 2 \text{ with } x = -3 \text{ stated}$ and $(1)^{6} + (1)^{4} = 2 \text{ with } x = -1 \text{ stated}$		
	Statement with M2 seen	A1	eg either side of $P \frac{dy}{dx} > 0$ with M2 seen SC2 states two values of x (one < -2 and one > -2) and shows the correct value of $\frac{dy}{dx}$ for each and makes a statement SC1 states two values of x (one < -2 and one > -2) and shows the correct value of $\frac{dy}{dx}$ for each		

Mark scheme and Additional Guidance continue on the next three pages

Q	Answer	Mark	Comments
27 cont	Alternative method 2		
	$x < -2$ and $(-)^6 + (-)^4$		allow without brackets
	and	M1	allow less than for < etc
	$x > -2$ and $(+)^6 + (+)^4$		
	$x < -2$ and $(-)^6 + (-)^4 > 0$		allow without brackets
	and	M1dep	allow = $+$ for > 0
	$x > -2$ and $(+)^6 + (+)^4 > 0$		
	Statement with M2 seen		eg either side of $P \frac{dy}{dx} > 0$ with M2 seen
		A1	SC2 states two values of x (one < -2 and one > -2)
			and shows the correct value of $\frac{dy}{dx}$ for
			each and makes a statement
			SC1 states two values of x (one < -2 and one > -2)
			and shows the correct value of $\frac{dy}{dx}$ for
			each

Additional Guidance is on the next two pages

Comments

Mark

Answer

Q

Additional Guidance For A1 a clear statement is needed after M2 scored Examples of acceptable statements with M2 seen eg1 For x < -2 gradient is + and for x > -2 gradient is + eg2 To the left of P m > 0To the right of P m > 0eg3 (When both of their substitutions correctly evaluate to the same value) They are the same positive value eg4 Both gradients are the same sign eg5 m is + **both** times eg6 Gradient is **always** positive (apart from at *P*) eg7 **Function (or curve)** is increasing (either side of *P*) Allow a statement to be made using a diagram with M2 seen eg accept for eg2 above m > 0m > 0Allow a statement to be made using a table with M2 seen eg accept for eg1 above -3 -2 **-1** 0 + + When both of their substitutions correctly evaluate to the same positive value condone for the statement with M2 seen Gradients are the same (implies both positive) Do not accept for the statement eg1 Gradient is increasing eg2 m is positive eg3 Gradient is positive eg4 P is a point of inflection

Additional Guidance continues on the next page

Q	Answer	Mark	Comments			
27 cont	Additional Guidance					
	Allow gradient or m for $\frac{dy}{dx}$					
	For evaluations allow rounding or trunc	f or better				
	Ignore higher derivatives					
	Ignore substitution of $x = -2$					
	x = -3 gradient = 2 x = -1 gradient = 2		SC	2		
	either side of <i>P</i> gradient > 0					
	-3 -2 -1 2 0 2 gradient is positive	both times	SC	;2		
	-3 -2 -1 2 0 2		SC	;1		