

LEVEL 2 CERTIFICATE Further Mathematics

Paper 2 8360/2 Calculator Mark scheme

8360 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1(a)	$\frac{3-5\times20}{2} \text{ or } \frac{3-100}{2}$ or $(-)\frac{97}{2} \text{ or } (-)48.5$ or $\frac{3-5\times8}{2} \text{ or } \frac{3-40}{2}$ or $(-)\frac{37}{2} \text{ or } (-)18.5$ or $12\times(-)\frac{5}{2}$	M1	Oe
	(–)30	A1	Accept if both 30 and -30 are seen
	Additional Guidance		

	$-\frac{3}{2}$ or $-1\frac{1}{2}$ or -1.5	B1	oe	
	Ad	ditional G	uidance	
	Condone $\frac{3}{-2}$ or $n \to -1.5$ or $-1\frac{1}{2} \to -1.5$	×		B1
1(b)	1(b) $-\frac{3n}{2n}$			B1
	$-\frac{3n}{2n}$ not processed			
	$\frac{3}{0-2}$ not processed	B0		
	-1.5 <i>n</i>			B0

	$\begin{pmatrix} 13 & -2 \\ 6 & 1 \end{pmatrix}$	B2	B1 13 or –2 or 6 or 1 in correct position in a 2 b	oy 2 matrix	
	Additional Guidance				
2(a)	Condone missing brackets for B2 or B1 if numbers in a 2 by 2 array				
2(a)	Brackets may be square or curly etc				
	Ignore commas and fraction lines				
	$ \begin{pmatrix} 13 & -2 \\ 6 & 1 \end{pmatrix} $ followed by further work			B1	

	5k = 11 - 3k or $2k = 11 - 6kor 11 - 3k = \frac{5}{2}(11 - 6k)or 8k = 11$	M1	oe Any one correct equation	
	$\frac{11}{8}$ or $1\frac{3}{8}$ or 1.375 with no incorrect equation seen	A1	oe	
	Ade			
2(b)	$\binom{5k}{2k} = \binom{11 - 3k}{11 - 6k}$ with no further corre	МО		
	Ignore subsequent attempt to conver	M1A1		
	Ignore subsequent attempt to convert $1\frac{3}{8}$ to an improper fraction or decimal			M1A1
	Ignore subsequent rounding or truncation of 1.375			
	Answer only 1.37 or 1.38 or 1.4 T & I is 2 or zero			MO

	Valid explanation	B1	eg Number of columns of B does not equal number of rows of A	t
	Ad	ditional G	uidance	
	'2 by 1' (or '2 × 1') matrix means 2 ro	ws and 1	column	
	'First matrix' means B and 'second m	natrix' mea	ns A	
	B columns ≠ A rows		B1	
	B rows ≠ A columns		BO	
	B columns ≠ A columns		BO	
	B rows ≠ A rows		BO	
	Number of rows in second matrix car columns in first matrix	nnot be mo	bre than number of B1	
	B has 1 column, A has 2 rows			
	A should only have 1 row			
2(c)	A has too many rows			
	B only has one column			
	B needs another column			
	It is a 2 x 1 multiplied by a 2 \times 2			
	There's nothing to multiply the 3 by			
	It is a 2 x 2 multiplied by 2 x 1		BO	
	It is a 1 by 2 multiplied by a 2 by 2			
	B values can't multiply with all the A	values	BO	
	They are not compatible		BO	
	Because the dimensions of A and B	are differe	nt B0	
	Can't work it out this way round		BO	
	Can work out AB but not BA		BO	
	B has to be a 2 by 2 matrix		BO	

	3 (×) 455 or 5 (×) 273 or 7 (×) 195 or 13 (×) 105 or 15 (×) 91 or 21 (×) 65 or 35 (×) 39 or 3 (×) 5 (×) 7 (×) 13	M1	oe eg 1365 ÷ 5 = 273 Any order Must be integers May be seen in a factor tree or repeate division	ed
3(a)	3 5 91 or 3 7 65 or 3 13 35 or 5 7 39 or 5 13 21 or 7 13 15	A1	Any order Must be integers	
	Additional Guidance			
	If using division the correct answer m	en for M1		
	Correct answer can be implied by wo eg $3(x) 5(x) 91$ with blank answer	M1A1		
	Answer line correct	M1A1		
	Allow inclusion of 1 for M1 eg 1 (×)	M1		

	b(a - 11) or $-b(11 - a)$	M1	Implied by square numbe eg1 4(36 – 11) eg2 9(16 – 11)	ers > 1 used
3(b)	a = 36 and $b = square number > 1$ with working for M1 seen	A1	Must be in correct order Allow unprocessed squares eg $a = 6^2$ and $b = 5^2$ SC1 $a = 36$ and $b =$ square number > without working for M1 seen	
	Ade	ditional G	uidance	
	b(a - 11) = 0 or $b(a - 11)$ with further	er work		M1
	Answer line takes precedence over w	orking line	es	
	Embedded answer eg 81(36 – 11)			M1A0

	Alternative method 1				
	$\frac{a+4}{2} = 3a$ or $3a - a = 4 - 3a$ or $a + \frac{4-a}{2} = 3a$ or $4 - \frac{4-a}{2} = 3a$ or $4 - a = 2(3a - a)$	M1	Oe		
	6a - a = 4 or $3a - a + 3a = 4$ or $2a - a - 6a = -4$ or $8 - 4 = 6a - a$ or $4 = 4a + a$ or $5a = 4$	M1dep	oe Allow eg $3a \times 2$ for $6a$ Terms collected		
5	$\frac{4}{5}$ or 0.8	A1	oe		
	Alternative method 2				
	$\frac{8-6}{3a-a} = \frac{10-6}{4-a}$ or $\frac{8-6}{3a-a} = \frac{10-8}{4-3a}$ or $\frac{10-6}{4-a} = \frac{10-8}{4-3a}$	M1	oe eg fractions inverted		
	8a + 2a = 8 or $6a + 4a = 8$ or $-12a + 2a = 8 - 16$ or $5a = 4$	M1dep	oe Allow eg $2a \times 4$ for $8a$ Terms collected		
	$\frac{4}{5}$ or 0.8	A1	oe		

Alternative method 3 and Additional Guidance continue on the next page

	Alternative method 3		
	$(8-6)^{2} + (3a-a)^{2}$ = $(10-8)^{2} + (4-3a)^{2}$ or $5a^{2} - 24a + 16$ (= 0) or $(10-6)^{2} + (4-a)^{2}$ = $2^{2}((8-6)^{2} + (3a-a)^{2})$ or $15a^{2} + 8a - 16$ (= 0) or $(10-6)^{2} + (4-a)^{2}$ = $2^{2}((10-8)^{2} + (4-3a)^{2})$ or $35a^{2} - 88a + 48$ (= 0)	M1	oe Using $PM^2 = MQ^2$ or $PQ^2 = 4PM^2$ or $PQ^2 = 4MQ^2$
5 cont	(5a-4)(a-4) (= 0) or $\frac{-24 \pm \sqrt{(-24)^2 - 4 \times 5 \times 16}}{2 \times 5}$ or $(5a-4)(3a+4) (= 0)$ or $\frac{-8 \pm \sqrt{8^2 - 4 \times 15 \times -16}}{2 \times 15}$ or $(5a-4)(7a-12) (= 0)$ or $\frac{-88 \pm \sqrt{(-88)^2 - 4 \times 35 \times 48}}{2 \times 35}$	M1dep	oe eg $\frac{12}{5} \pm \sqrt{\frac{64}{25}}$ or $-\frac{4}{15} \pm \sqrt{\frac{256}{225}}$ or $\frac{44}{35} \pm \sqrt{\frac{256}{1225}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow eg 24^2 for $(-24)^2$ Implied by correct solutions to their 3-term quadratic seen
	$\frac{4}{5}$ or 0.8	A1	oe Must reject solution 4 or $-\frac{4}{3}$ or $\frac{12}{7}$
	Ade	ditional G	uidance
	Terms must be collected but do not have to be processed for M1dep eg (Alt 1) $a + 4 = 6a$ needs terms collecting to $4 = 6a - a$ for M1dep		
	Rejection of solution is implied by only	$y \frac{4}{5}$ on ar	nswer line

	$\sin 38 = \frac{r}{20}$ or $\cos (90 - 38) = \frac{r}{20}$ or $\frac{r}{\sin 38} = \frac{20}{\sin 90}$ or $\frac{\sin 38}{r} = \frac{\sin 90}{20}$	M1	oe Any letter	
	$20 \times \sin 38$ or $20 \times \cos (90 - 38)$ or $\frac{20}{\sin 90} \times \sin 38$ 12.3()	M1dep	oe M2 $\sqrt{20^2 - (20\cos 38)^2}$ M2 $\frac{\sqrt{20^2 + 20^2 - 2 \times 20 \times 20}}{2}$ SC2 Angle VAC = 38 sec	
-	A1 A1 and answer 15.76() or 15.8			-
	Ade	ditional G	uidance	
6	If trigonometry and Pythagoras are us that would lead to the correct value of If cosine rule with angle (38 × 2) used			
	that would lead to the correct value of			
-	Answer 15.76() or 15.8 but angle V	Zero		
	12.3() seen and angle 38 in correct eg 20 sin 38 = 12.3			
	$\sqrt{20^2 - 12.3^2} = 15.8$	Zero		
-	sin 38 × 20 (even if subsequently evaluate the subsequently evaluate the subsequent of the subsequent of the subsequence of th	M2		
	Throughout, accept opp or o for r e	M1		
	$\sin = \frac{r}{20}$ or $\sin \theta = \frac{r}{20}$ (unless recov	MO		
	Answer 12.3() coming from scale d	M2A1		
-	Answer 12 coming from scale drawing	Zero		
	12.3() seen with no further work fol	lowed by a	nswer 12	M2A1

	Alternative method 1			
	(x-coordinate of A =) 10 and (y-coordinate of B =) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	
	(x-coordinate of P =) $\frac{2}{2+3} \times \text{their 10}$ or $\frac{2 \times \text{their 10} + 3 \times 0}{2+3}$ or 4	M1	oe their 10 must be their <i>x</i> -coordinate of <i>A</i> May be seen on diagram	
	(area of triangle <i>OBP</i> =) $\frac{1}{2}$ × their 8 × their 4	M1dep	oe their 8 must be their <i>y</i> -coordinate of <i>B</i>	
7	16	A1ft	ft B0M2	
	Alternative method 2			
	(x-coordinate of A =) 10 and (y-coordinate of B =) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	
	(area of triangle $OAB =$) $\frac{1}{2} \times$ their 10 × their 8 or 40	M1	oe	
	(area of triangle <i>OBP</i> =) $\frac{2}{2+3} \times \text{their } 40$	M1dep	oe eg their 40 – $\frac{3}{2+3}$ × their 40	
	16	A1ft	ft B0M2	

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

	Alternative method 3			
	(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	
	(area of triangle $OAB =$) $\frac{1}{2} \times$ their 10 × their 8 or 40	M1	oe	
7 cont	(y-coordinate of $P =$) $\frac{3}{2+3} \times \text{their 8 or 4.8}$ and (area of triangle $OPA =$) $\frac{1}{2} \times \text{their 10} \times \text{their 4.8 or 24}$ and (area of triangle $OBP =$) their 40 – their 24	M1dep	oe their 8 must be their <i>y</i> -coordinate of <i>B</i> <i>y</i> -coordinate of <i>P</i> may be seen on diagram	
	16	A1ft	ft B0M2	

Alternative method 4 and Additional Guidance continue on the next page

Alternative method 4				
(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagra eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	ım	
$(AB =) \sqrt{\text{their } 10^2 + \text{their } 8^2}$ or $\sqrt{100 + 64}$ or $\sqrt{164}$ or $2\sqrt{41}$ or $12.8()$ and $(BP =) \frac{2}{2+3} \times \text{their } 12.8()$ or $5.12()$ and (angle $OBP =$) $\tan^{-1} \frac{\text{their } 10}{\text{their } 8}$ or $51.3()$	M1	oe their 10 must be their <i>x</i> -coordinate of <i>x</i> their 8 must be their <i>y</i> -coordinate of <i>B</i>		
(area of triangle <i>OBP</i> =) $\frac{1}{2}$ × their 8 × their 5.12 × sin their 51.3	M1dep	oe their 8 must be their <i>y</i> -coordinate of <i>B</i>		
16	A1ft	ft B0M2		
Additional Guidance				
A = 10 and B = 8	B1			
A (8, 0) and B (0, 10) is B0 but can su (answer 16)				
Area triangle OBP may be seen as th	wo right-angled triangles			
Area triangle <i>OBP</i> may be seen as				
	ubsequently used	4		
Answer 15.9() \rightarrow answer 16	4 marks B1M2A0			
	(x-coordinate of A =) 10 and (y-coordinate of B =) 8 (AB =) $\sqrt{\text{their } 10^2 + \text{their } 8^2}$ or $\sqrt{100 + 64}$ or $\sqrt{164}$ or $2\sqrt{41}$ or $12.8()$ and $(BP =) \frac{2}{2+3} \times \text{their } 12.8()$ or $5.12()$ and (angle $OBP =$) $\tan^{-1} \frac{\text{their } 10}{\text{their } 8}$ or $51.3()$ (area of triangle $OBP =$) $\frac{1}{2} \times \text{their } 8 \times \text{their } 5.12$ $\times \text{sin their } 51.3$ 16 Add A = 10 and $B = 8A$ (8, 0) and B (0, 10) is B0 but can su (answer 16) A (0, 10) and B (8, 0) is B0 but can su x-coordinate of A as 10 and y -coordinate A (0, 8) and B (10, 0) is B0 but can su x-coordinate of A as 8 and y -coordinate Area triangle OBP may be seen as the Area triangle OBP may be seen as the triangle A (0, 10)	(x-coordinate of $A = 10$ B1and (y-coordinate of $B = 8$ B1 $(AB =) \sqrt{\text{their } 10^2 + \text{their } 8^2}$ or $\sqrt{100 + 64}$ or $\sqrt{164}$ or $2\sqrt{41}$ or $12.8()$ and $(BP =) \frac{2}{2+3} \times \text{their } 12.8()$ M1or $5.12()$ and (angle $OBP =) \tan^{-1} \frac{\text{their } 10}{\text{their } 8}$ M1or $5.12()$ and (angle $OBP =) \tan^{-1} \frac{\text{their } 10}{\text{their } 8}$ M1(area of triangle $OBP =)$ $\frac{1}{2} \times \text{their } 8 \times \text{their } 5.12$ M1dep $\times \sin \text{ their } 51.3$ M1M116A1ftAdditional Get $A = 10$ and $B = 8$ $A (8, 0)$ and $B (0, 10)$ is B0 but can subsequent!(answer 16)A (0, 10) and $B (8, 0)$ is B0 but can score up to 1 x -coordinate of A as 10 and y -coordinate of B as $A (0, 8)$ and $B (10, 0)$ is B0 but can score up to 1 x -coordinate of A as 8 and y -coordinate of B asArea triangle OBP may be seen as the sum of the their seen as area trapezium $OBPX$ – area triangle OPX X is on the x -axis with PX perpendicular to the A Allow marks for valid working seen even if not seen as area trapezium $OBPX - area triangle OPX$ X is on the x -axis with PX perpendicular to the A Allow marks for valid working seen even if not seen as area trapezium $OBPX - area triangle OPX$ X is on the x -axis with PX perpendicular to the A	$(x - \operatorname{coordinate} \operatorname{of} A =)$ 10 and $(y - \operatorname{coordinate} \operatorname{of} B =)$ B1May be implied on diagramination of the end	

	Alternative method 1				
8	(<i>BC</i> =) 12	B1	Allow as two 6s labelled on <i>BC</i> after perpendicular drawn from <i>A</i>		
	their $12^2 = 7^2 + 8^2$ $-2 \times 7 \times 8 \times \cos A$ or $144 = 49 + 64 - 112 \cos A$ or $144 = 113 - 112 \cos A$ or $\frac{7^2 + 8^2 - \text{their } 12^2}{2 \times 7 \times 8}$ or $\frac{49 + 64 - 144}{112}$ or $-\frac{31}{112}$ or $[-0.277, -0.27]$ or -0.28	M1	0e Do not allow if their 12 comes from use of Pythagoras' theorem ie $(BC =) \sqrt{7^2 + 8^2}$ or $\sqrt{113}$ or $10.6()$ is B0M0		
	$\cos^{-1}\left(\frac{7^2+8^2-\text{their }12^2}{2\times7\times8}\right)$	M1dep A1ft	oe May be implied by final answer		
	[106, 106.1] A1ft Only ft B0M2 Alternative method 2 A1ft Only ft B0M2				
	(<i>BC</i> =) 12	B1	Allow as two 6s labelled on <i>BC</i> after perpendicular drawn from <i>A</i>		
	(angle $ABC =$) $\cos^{-1}\left(\frac{7^2 + \text{their } 12^2 - 8^2}{2 \times 7 \times \text{their } 12}\right)$ or 39.8 and $\sin A = \frac{\sin \text{their } 39.8}{8} \times \text{their } 12$ or $\sin A = 0.96$	M1	oe eg works out angle <i>ACB</i> (= 34.09() or 34.1) and uses sine rule Do not allow if their 12 comes from use of Pythagoras' theorem ie (<i>BC</i> =) $\sqrt{7^2 + 8^2}$ or $\sqrt{113}$ or 10.6() is B0M0		
	180 – sin ^{–1} (their 0.96…)	M1dep	oe May be implied by final answer		
	[106, 106.1]	A1ft	Only ft B0M2		

Additional Guidance continues on the next page

8 cont	Additional Guidance
	cos ⁻¹ or cos ⁻¹ ans does not score M1dep unless recovered
	For the M1dep must have correct rearrangement but allow arithmetic errors
	Answer outside range is A0 eg 106.2() from $\cos^{-1}(-0.28)$

	Alternative method 1				
	$-\frac{11}{5} < x \le \frac{5}{5}$ or $-2.2 < x \le \frac{5}{5}$	M1	oe eg $x \le \frac{5}{5}$ and $x > -\frac{11}{5}$		
	$-\frac{11}{5} < x \le 1 \text{ or } -2.2 < x \le 1$ or $-2 \le x \le 1 \text{ or } -2, -1, 0, 1$	A1	oe eg $x \leq 1$ and $x > -\frac{11}{5}$		
	$6x - 4x \leqslant 4 - 7 \text{ or } 2x \leqslant -3$	M1	oe Collects terms		
	$x \le -\frac{3}{2}$ or $x \le -1.5$ or $x < -\frac{3}{2}$ or $x < -1.5$ or $x \le -2$ or $-2, -3$ (, $-4,$)	A1	$-2.2 < x \le -1.5$ or $-2 \le x \le -1.5$ implies M1A1M1A1		
	–2 with no other values given	A1	Must have gained M1A1M1A1		
9	Alternative method 2				
5	Shows that –2 satisfies either –11 < 5 $x \le 5$ or 6 x + 7 $\le 4x$ + 4	M1	eg $-11 < -10 \le 5$ or $5x = -10$ and yes		
	Shows that -2 satisfies both -11 < $5x \le 5$ and $6x + 7 \le 4x + 4$	A1			
	Shows that -1 does not satisfy $6x + 7 \le 4x + 4$ or shows that -3 does not satisfy $-11 < 5x \le 5$	M1	eg -6 + 7 > -4 + 4		
	Shows that -1 does not satisfy $6x + 7 \le 4x + 4$ and shows that -3 does not satisfy $-11 < 5x \le 5$	A1			
	–2 with no other values given	A1	Must have gained M1A1M1A1		

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

	Alternative method 3		
	$-\frac{11}{5} < x \le \frac{5}{5}$ or $-2.2 < x \le \frac{5}{5}$	M1	oe eg $x \le \frac{5}{5}$ and $x > -\frac{11}{5}$
	$-\frac{11}{5} < x \le 1 \text{ or } -2.2 < x \le 1$	A1	oe eg $x \leq 1$ and $x > -\frac{11}{5}$
	or $-2 \le x \le 1$ or $-2, -1, 0, 1$		
	Shows that -2 satisfies		eg 6 × −2 + 7 = −5
	$6x + 7 \leq 4x + 4$		and $4 \times -2 + 4 = -4 \checkmark$
9	or	M1	
	shows that –1 does not satisfy		
	$6x + 7 \leq 4x + 4$		
	Shows that -2 satisfies		
	$6x + 7 \leqslant 4x + 4$		
	and	A1	
	shows that –1 does not satisfy		
	$6x + 7 \leqslant 4x + 4$		
	–2 with no other values given	A1	Must have gained M1A1M1A1

Alternative method 4 and Additional Guidance continue on the next page

	Alternative method 4				
	$6x - 4x \leqslant 4 - 7 \text{ or } 2x \leqslant -3$	M1	oe Collects terms		
9	$x \le -\frac{3}{2}$ or $x \le -1.5$ or $x < -\frac{3}{2}$ or $x < -1.5$ or $x \le -2$ or $-2, -3$ (, $-4,$)	A1			
	Shows that -2 satisfies $-11 < 5x \le 5$ or shows that -3 does not satisfy $-11 < 5x \le 5$	M1	eg $-11 < -10 \le 5$ or $5x = -10$ and yes		
	Shows that -2 satisfies $-11 < 5x \le 5$ and shows that -3 does not satisfy $-11 < 5x \le 5$	A1			
	–2 with no other values given	A1	Must have gained M1A1M	1A1	
	Additional Guidance				
	Allow eg max 1 and min -2.2 for -2 . list of values				
	Condone omission of non-critical valu	ts eg –2, –1, 1			
	Using = signs when solving inequaliti recovered	re M marks only unless			
	Incorrect notation $eg \leq for < can sc$				
	If answers to trials evaluated they mu				
	Choose the scheme that favours the				
	-2 identified as the only integer with r	no valid wo	rking	Zero	

	Alternative method 1				
	$\frac{1}{2} \times x \times x \times \sin 150 \text{ or } \frac{1}{4}x^2$ or $\frac{1}{2} \times b \times c \times \sin 150 = 57.76$ or $\frac{1}{4} \times b \times c = 57.76$	M1	oe Any letter(s)		
	$x^{2} = \frac{57.76 \times 2}{\sin 150}$ or $x^{2} = 57.76 \times 4$ or $x^{2} = 231(.04)$ or $\frac{1}{2}x = \sqrt{57.76}$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$	M1dep	oe eg $x^2 = \frac{57.76}{\frac{1}{2} \sin 150}$ Must have either $x^2 =$ or $\frac{1}{2}x = \sqrt{57.76}$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$ Any letter		
	15.2	A1			
10	Alternative method 2				
	$\frac{1}{2} \times x \times x \cos \frac{150}{2} \times \sin \frac{150}{2}$ $= \frac{57.76}{2}$	M1	oe Any letter		
	$x^{2} = \frac{57.76}{\cos\frac{150}{2}\sin\frac{150}{2}}$ or $x^{2} = 231(.04)$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$	M1dep	oe Must have either $x^2 =$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$ Any letter		
	15.2	A1			
	Additional Guidance				
	Do not allow 15 as a misread of 150				
	x can be b or AB or AC etc				
	b and c can be a and b or AB and AC				

	Straight line between (-2, 7) and (0, 3)	B1	Tolerance of ±1 small squ Allow line to be extended	Jare
	Points (0, 3) (1, 4) (2, 3) (3, 0) (4, -5)	M1	Tolerance of ±1 small squ May be plotted or seen in Points can be implied	
	Correct smooth parabolic curve with maximum at (1, 4)	A1	Tolerance of ±1 small squ Allow (ruled) straight line and (4, –5) Curve passing through al within tolerance scores M	between (3, 0) I correct points
	Straight line between (4, -5) and (5, 0)	B1	Tolerance of ±1 small square Allow line to be extended	
11(2)	Additional Guidance			
11(a)	Ignore extra points plotted			
	Tolerance of ±1 small square means shaded area			
	Points only can score a maximum of M1			
	Ruled straight lines for curve apart from between $(3, 0)$ and $(4, -5)$			A0
	If all 4 marks would be awarded but e (i) graph has a line or a curve that ex or	3 marks		
	(ii) the curve does not meet a line at a cusp			

	$-5 \le f(x) \le 7$ or $7 \ge f(x) \ge -5$ or $[-5, 7]$	Correct or ft their graph in (a) for B2 ft their graph in (a) for B1B2ftB1ft $-5 \leq f(x)$ or $f(x) \leq 7$ on their own or embedded within an interval for $f(x)$ or only -5 and 7 chosen $eg -5 < f(x) < 7$		
	Ade	ditional G	uidance	
	Allow $f(x)$ to be y or f or fx eg1 $-5 \le y \le 7$ eg2 $f \le 7$			B2 B1
	Allow as two inequalities $f(x) \ge -5$	(and/or) f(x)	B2
	ft their graph if incomplete eg no graph drawn for $-2 \le x < 0$ but otherwise correct and answer $-5 \le f(x) \le 4$			B2ft
	ft their graph if drawn for x values beyond [–2, 5] eg1 straight line from (–3, 8) to (6, –1) and answer $-1 \le y \le 8$ eg2 straight line from (–3, 8) to (6, –1) and answer $f(x) \le 8$			B2ft B1ft
11(b)	Straight line from (–2, 9) to (6, –7) and answer $-7 \le y \le 9$			B2ft
	Straight line from (0, 9) to (5, –4) and answer $-4 \le f(x) \le 9$			B2ft
	B2ft (or B1ft) can be awarded for a range beyond [-7, 9] if it is clear from working (eg a table of values) where the answer is from			
	–5 to 7 inclusive is B2 whereas –5 to 7 is B1			
	B1 for a correct inequality embedded			
	eg1 $-5 < f(x) \le 7$			B1
	eg2 $-5 \le f(x) \le 0$ eg3 $-2 \le y \le 7$			B1 B1
	For B1 ignore incorrect notation if only –5 and 7 chosen			
	eg1 $-5 \leq x \leq 7$			B1
	eg2 $-5 < x \leq 7$			B1
	eg3 $-5 \ge f(x) \ge 7$			B1 B1
	eg4 –5, 7			
	{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}			B0
	Working out a statistical range eg –	5 to 7 = 12	2	B0

	$3(25 - x^2)$ or $-3(x^2 - 25)$ or $(15 + 3x)(5 - x)$ or $(x + 5)(15 - 3x)$	M1	oe partial factorisation eg $-(3x + 15)(x - 5)$ Brackets in either order Do not allow $-(3x^2 - 75)$	
12(a)	3(5 + x)(5 - x) or $3(-x - 5)(x - 5)$ or $-3(x + 5)(x - 5)$ or $-3(5 - x)(-x - 5)$	A1		
	Additional Guidance			
	(-x + 5) is equivalent to $(5 - x)$ etc			
	Do not allow A1 for incorrect notation in final answer eg $(5 + x)3(5 - x)$			M1A0
	Do not allow A1 for use of multiplication signs in final answer			
	eg $3 \times (5 + x) \times (5 - x)$			M1A0
	Correct answer followed by incorrect	further wo	rk	M1A0

	Alternative method 1			
	$9n^{2} + 3n + 3n + 1$ or $9n^{2} + 6n + 1$ or $9n^{2} - 3n - 3n + 1$ or $9n^{2} - 6n + 1$	M1	oe Terms may be seen in a gi	id
	12 <i>n</i> with no incorrect working	A1	Brackets can be recovered	
	Alternative method 2			
	(3n + 1 + 3n - 1)(3n + 1 - (3n - 1)) or $(3n + 1 + 3n - 1)(3n + 1 - 3n + 1)$	M1	oe Brackets around 3 <i>n</i> – 1 can be recovered	
	12 <i>n</i>	A1		
12(b)	Additional Guidance			
	Alt 1 12 <i>n</i> may come from incorrect working eg1 $3n^2 + 6n + 1 - (3n^2 - 6n + 1) = 12n$ eg2 $9n^2 + 3n + 1 - (9n^2 - 3n + 1) = 12n$			M0A0 M0A0
	Alt 1 Recovery of brackets eg1 $9n^2 + 6n + 1 - 9n^2 - 6n + 1 = 12n$ eg2 $9n^2 + 6n + 1 - 9n^2 - 6n + 1 = 2$			M1A1 M1A0
	Alt 2 Recovery of brackets eg1 $(3n + 1 + 3n - 1)(3n + 1 - 3n - 1) = 12n$ eg2 $(3n + 1 + 3n - 1)(3n + 1 - 3n - 1) = 0$			M1A1 M0A0
	Do not allow A1 for use of multiplication signs in final answer eg 12 × n with no incorrect working			M1A0

	Single correct fraction with terms processed	M1	eg1 $\frac{600a^5 + 1200a^4}{36a^3 + 72a^2}$ eg2 $\frac{50a^3 + 100a^2}{3a + 6}$ Only bracket allowed is (a) eg $\frac{50a^4(a + 2)}{3a^3 + 6a^2}$ (scores b)	
13	Factorises correctly using (<i>a</i> + 2)	M1	Only needs to be seen once eg1 $\frac{8a}{3a+6} \times \frac{5(a+2)}{3a^2} \div \frac{4}{15a^3}$ eg2 $\frac{8a}{3(a+2)} \times \frac{5a+10}{3a^2} \times \frac{15a^3}{4}$ Award M2 for fully correct unprocessed expression with full cancelling seen eg $\frac{2}{3(a+2)} \times \frac{5(a+2)}{3(a+2)} \times \frac{545a^3}{4}$ or $\frac{2a}{3} \times 5 \times 5a$ oe	
	$\frac{50a^2}{3}$ or $16\frac{2}{3}a^2$ or $16.6a^2$	A1		
	Additional Guidance			
	$\frac{50 \times a \times a}{3}$			M2A0
	A correct single fraction with $(a + 2)$ cancelled will be M2 eg1 $\frac{250a^2}{15}$ eg2 $\frac{50a^4}{3a^2}$			M2A0
	$\frac{8a}{3} \times \frac{5(a+2)}{3a^2} \times \frac{15a^3}{4}$			M0M1A0
	3a + 6 = 3(a + 2) with no other valid working			M0M1A0
	Brackets other than $(a + 2)$ may be seen $\frac{10a^2(5a + 10)}{3a + 6}$			МОМО
	Correct answer followed by incorrect	Correct answer followed by incorrect further work		
	Allow one miscopy for up to M2A0			

	Alternative method 1				
	$-\frac{1}{4}$ or -0.25	B1	gradient of $x + 4y = 74$ Do not allow embedded May be implied		
	(gradient =) $\frac{-1}{\text{their} - \frac{1}{4}}$ or 4	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y = 4x + b$ or $a = 4$ (B1M1)		
	$(y=)$ $\frac{74-2}{4}$ or $\frac{72}{4}$ or 18	M1	oe May be seen on diagram		
	their 18 = their $4 \times 2 + b$ or y – their 18 = their $4(x - 2)$	M1dep	oe dep on M2		
14	<i>b</i> = 10	A1ft	ft 18 – their 4 × 2 if B0M3		
14	Alternative method 2				
	$-\frac{1}{4}$ or -0.25	B1	gradient of $x + 4y = 74$ Do not allow embedded May be implied		
	(gradient =) $\frac{-1}{\text{their} - \frac{1}{4}}$ or 4	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y = 4x + b$ or $a = 4$ (B1M1)		
	Correct method for elimination of y from $x + 4y = 74$ and $y =$ their $4x + b$	M1dep eg $x + 4(4x + b) = 74$ or $17x + 4$			
	Substitutes $x = 2$ into their equation	M1dep	eg 34 + 4 <i>b</i> = 74		
	<i>b</i> = 10	A1ft	ft 18 – their 4 × 2 if B0M3		

Alternative method 3 and Additional Guidance continue on the next page

	Alternative method 3	-		
	$-\frac{1}{4}$ or -0.25	B1	gradient of $x + 4y = 74$ Do not allow embedded May be implied	
	(gradient =) $\frac{-1}{\text{their} - \frac{1}{4}}$ or 4	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y = 4x + b$ or $a = 4$ (B1M1)	
	$(y=)$ $\frac{74-2}{4}$ or $\frac{72}{4}$ or 18	M1	oe May be seen on diagram	
14 cont	Correct method for elimination of x from x + 4y = 74 and $y =$ their $4x + band substitutes y = their 18$	M1dep	eg $y = 4(74 - 4y) + b$ or $17y = 296 + b$ and $306 = 296 + b$ dep on M2	
	<i>b</i> = 10	A1ft	ft 18 – their 4 × 2 if B0M3	
	Additional Guidance			
	y = 4x + 10 will gain full marks unles	sted		
	If an error is made in the constant term when rearranging $x + 4y = 74$ the B1 can still be awarded for gradient $= -\frac{1}{4}$			
	eg $y = -\frac{1}{4}x + 19$ and gradient $= -\frac{1}{4}$ is B1 (all other marks are possible)			
	In alt 1 and alt 3 the mark for $y = 18$ will sometimes be the only mark awarded			

	Alternative method 1				
	wy = 8x - y	$w = \frac{8x}{y} - 1$ or $w + 1 = \frac{8x}{y}$	M1		
	wy + y = 8x or $y(w + 1) = 8x$	$\frac{w+1}{8x} = \frac{1}{y}$	M1dep	oe y term(s) collected eg $-wy - y = -8x$ M2 $\frac{8x}{w+1}$ or $\frac{-8x}{-w-1}$ or $\frac{-8x}{-w-1}$	$\frac{-8x}{-(w+1)}$
	$y = \frac{8x}{w+1} \text{ or } y =$ or $y = \frac{-8x}{-(w+1)}$	$\frac{-8x}{-w-1}$	A1	oe eg $y = \frac{4x}{0.5w + 0.5}$ Must have $y =$	
	Alternative method 2				
15	$y = \frac{8x}{w} - \frac{y}{w}$		M1		
	$y + \frac{y}{w} = \frac{8x}{w}$ or $y($	$1 + \frac{1}{w}) = \frac{8x}{w}$	M1dep	oe y term(s) collected M2 $\frac{\frac{8x}{w}}{1+\frac{1}{w}}$	
	$y = \frac{\frac{8x}{w}}{1 + \frac{1}{w}}$		A1	oe Must have <i>y</i> =	
	Additional Guidance				
	$y = \frac{8x}{w+1}$ in working with $\frac{8x}{w+1}$ on answer line etc			tc	M2A1
	Allow multiplications signs and 1s throughout				
	$w = \frac{8x}{y} - \frac{y}{y}$ with no further simplification			МО	
	Correct answer fo	llowed by incorrect	further wor	k	M2A0

	3 ^{-2b}	B1		
16(a)	Ad	ditional Gu	lidance	

	5 ^{<i>x</i>+2}	B1		
16(b)	Additional Guidance			

	2 ^{3m}	B1		
16(c)	Ad	ditional Gu	lidance	

	$3x^2$ or (–)12x	M1	Attempt at $\frac{dy}{dx}$	
	their $(3x^2 - 12x) = 0$	M1dep	Must have at least 2 terms for their $\frac{dy}{dx}$ The = 0 can be implied by sight of a correct non-zero solution to their $(3x^2 - 12x) = 0$	
	x = 4 (and $x = 0$)	A1ft	ft M2 if their $\frac{dy}{dx}$ is a 2-term quadratic	
17(a)	(4, -25) with correct expression for $\frac{dy}{dx}$ seen	A1		
	Additional Guidance			
	Condone $y = 3x^2 - 12x$ etc	M1		
	Ignore working for second derivative			
	Stating $\frac{dy}{dx} = 0$ is not sufficient for second M mark but may be implied by correct solution(s) seen			

	Alternative method 1				
	$(-1)^{3} - 6(-1)^{2} + 7 = 0$ with no incorrect evaluations seen or $-1 - 6 + 7 = 0$	B1	Must have = 0		
	Alternative method 2				
17(b)	$(x + 1)(x^2 - 7x + 7) = 0$ and $(x + 1) = 0$ and $x = -1$	B1			
	Additional Guidance				
	$(-1)^3 - 6(-1)^2 + 7$ or $-1 - 6 + 7$			В0	
	Allow -1^3 or (-1^3) for $(-1)^3$				
	Allow recovery of brackets for $(-1)^2$				
	eg1 $-1^3 - 6 \times -1^2 + 7 = 0$			B0	
	eg2 $-1^3 - 6 \times -1^2 + 7 = -1 - 6 + 7 =$	= 0		B1	

	Alternative method 1	Alternative method 1			
	(x – –1) or (x + 1) seen	M1			
	$(x+1)(x^2-7x+c)$	M1dep	c can be any non-zero value Implied by $(x + 1)(x^2 + bx + c)$ and $b + 1 = -6$ or $b = -7$		
	$x^2 - 7x + 7 (= 0)$	A1			
	$\frac{7\pm\sqrt{(-7)^2-4\times1\times7}}{2\times1}$ or $\frac{7\pm\sqrt{21}}{2}$	M1	oe eg $\frac{7}{2} \pm \sqrt{\frac{21}{4}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets Allow 7 ² for (-7) ² Implied by correct solutions to their 3-term quadratic seen		
17(c)	5.79 and 1.21 with $x^2 - 7x + 7$ (= 0) seen	A1	Must both be to 2 dp		
	Alternative method 2				
	(x1) or $(x + 1)$ seen	M1			
	$\frac{x^2 - 7x \dots}{x + 1 x^3 - 6x^2 (+ 0x) + 7}$	M1dep			
	$x^2 - 7x + 7 (= 0)$	A1			
	$\frac{7 \pm \sqrt{(-7)^2 - 4 \times 1 \times 7}}{2 \times 1}$ or $\frac{7 \pm \sqrt{21}}{2}$	M1	oe eg $\frac{7}{2} \pm \sqrt{\frac{21}{4}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets Allow 7 ² for (-7) ² Implied by correct solutions to their 3-term quadratic seen		
	5.79 and 1.21 with $x^2 - 7x + 7$ (= 0) seen	A1	Must both be to 2 dp		

Additional Guidance is on the next page

	Additional Guidance	
47(-)	Final A1 mark can be awarded if both answers seen in working with $x^2 - 7x + 7$ (= 0) seen but only one answer is written on answer line	
17(c) cont	$(x + 1)$ followed by 5.79 and 1.21 without $x^2 - 7x + 7$ (= 0) seen	M1M0A0 M0A0
	(x - 1) instead of $(x + 1)$ can score a maximum of M0M0A0M1A0	
	T & I on the cubic equation	Zero

	$x^{2} + (2x)^{2} = (4y)^{2}$ or $x^{2} + 4x^{2} = 16y^{2}$	M1	oe eg $5x^2 = (4y)^2$ Missing brackets may be	e recovered
	$x^{2} = \frac{16}{5}y^{2} \text{ or } 5x^{2} = 16y^{2}$ or $x = \sqrt{\frac{16y^{2}}{5}} \text{ or } x\sqrt{5} = 4y$	M1	oe equation of the form $ax^2 = by^2$ or $cx = dy$ or x eg $x^2 = 16y^2 \div 5$ ft if Pythagoras used with being missing brackets	
	2 × their $\frac{16}{5}y^2$ or their $16y^2 \div \frac{\text{their 5}}{2}$	M1dep	oe 2 × their x^2 or 2 × (their $x)^2$ dep on at least one M	
18	$\frac{32}{5}y^2$ or $6\frac{2}{5}y^2$ or $6.4y^2$	A1		
	Ad			
	$5x^2 = (4y)^2$ with no further work			M1M0M0
	$x^2 + 4x^2 = 4y^2$ with answer $\frac{8}{5}y^2$	MOM1M1A0		
	$x^{2} + 2x^{2} = 16y^{2}$ with answer $\frac{32}{3}y^{2}$	MOM1M1A0		
	$x^2 + 2x^2 = 4y^2$ with answer $\frac{8}{3}y^2$	MOM1M1A0		
	$(2x)^2 = (4y)^2 - x^2$	M1		
	$x^2 = 16y^2$ and $2 \times 16y^2 = 32y^2$			M0M1A0
	$\frac{32}{5}y^2$ followed by further work			M3A0

	k	B1		
19(b)	Additional Guidance			
	-k = 0 or $-k = 1$ etc			B0

	$k^{2} + \cos^{2} \alpha = 1$ or $1 - k^{2}$	M1	oe eg (1 + k)(1 - k)	
	$\sqrt{1-k^2}$ or $\sqrt{(1+k)(1-k)}$	A1		
	Ad	ditional Gu	lidance	
19(c)	Answer $-\sqrt{1-k^2}$ or $\pm\sqrt{1-k^2}$			M1A0
	Correct answer followed by incorrect further work			M1A0
	Answer 1 – k^2			M1A0
	Allow $\cos^2 x$ or $\cos^2 \theta$ etc or \cos^2 or c^2 or $(\cos \alpha)^2$ for $\cos^2 \alpha$			
	Condone $\cos \alpha^2$ for $\cos^2 \alpha$			
	$\cos(\sin^{-1}k)$			M0A0

	Angle in a semicircle (is a right angle) or Angle at centre is 180°, angle at circumference is half the angle at the centre (= 90°) or Angle at centre is 180°, angle at centre is twice the angle at the circumference or Angle subtended at circumference by a diameter	B1		
	Additional Guidance			
	Do not allow half a circle to mean a semicircle			
20(a)	Allow extra words if not contradictory			
	eg1 Angle at the circumference in a semicircle			B1
	eg2 Angle inscribed in a semicircle			B1
	Angle subtended by a diameter (no mention of at circumference)			B0
	Angle in a hemisphere is 90			B0
	Angle at centre is 180			B0
	Angle at circumference is half the angle at the centre			B0
	2 chords on diameter meet at 90			B0
	Triangle in a semicircle always has a right angle			B0
	Angle in a semicircle is 180			B0
	Angle on a diameter is a right angle			B0
	Because <i>AB</i> is a diameter			B0

	angle ABE	angle <i>DEB</i> = 90				
	= 90 - x	and				
	or	angle <i>DCB</i> = 90	B1			
	angle CBE					
	= 90 + <i>x</i>					
	angle <i>CDE</i> = 90 -	x	B1dep			
_						
	angle <i>CED</i> = 90 -	x	B1dep			
	angle $DCE = 2x$			See guidance for accepta for reasons	able wording	
	and		B1dep			
	all reasons given f	or their proof				
	Additional Guidance					
	To award a particu					
	First three B marks can be awarded with no or incorrect reasons					
	Do not mark any working on the diagram – statements are needed					
20(b)	Incorrect angles score B0					
	eg1 angle $ABE = 90 - x$ angle $DEC = 90 + x$				B1B0B0B0	
	eg2 angle $ABE = 90 - x$ angle $CDE = 90 - x$ angle $DCE = 90 + x$				B1B1B0B0	
	Angle CDE and ar					
	Angle EBA and angle ABE are the same angle etc					
	Condone ABE for angle ABE etc					
	Do not allow angle					
	CE must be proven to be a tangent if used in a response					
	Reasons					
	angle sum of triangle (is 180°) or angles in a triangle (add to 180°) or 180° in a triangle				Degrees symbol may	
	(adjacent) angles or 180° on a (strai	on a (straight) line (ght) line	add to 180	°)	be omitted Abbreviations	
	exterior angle of tr	iangle (= sum of op	posite inter	ior angles)	are allowed	
	(equal angles in a	n) isosceles (triangl	e) or <i>CD</i>	= CE	eg quad for quadrilateral	
	(opposite angles in	n a) cyclic quadrilate	eral (add to	180°)	quaumaterar	
	exterior angle of cyclic quadrilateral (= opposite interior angle)					

	(0, 8)	B1			
	Additional Guidance				
	Answer line takes precedence over w	orking line	s and diagram		
21(a)	21(a) Answer line blank with C labelled (0, 8) on diagramEAnswer line blank with 8 written next to C on diagramE(8, 0)EAnswer 8E				

	$-x^{2} - 2x + 4x + 8$ $-x^{2} - 2x + 4x + 8$	M1	Allow one error but no or Must have an x^2 term Terms may be seen in a Implied by $-x^2 + 2x + k$ or $ax^2 + 2x + 8$ $a \neq 0$ $-x^2 - 2x + 4x + 8$ but an	grid k≠0 error in any
	or $-x^2 + 2x + 8$ -2x - 2 + 4 or $-2x + 2$	A1	collection of terms is M1.	40
	or $-2(x-1)$ or $2(1-x)$	A1ft	ft their quadratic in x with M1 awarded	
	Additional Guidance			
21(b)	2 - 2x with final answer 2 (from substituting in $x = 0$)			M1A1A0
	Condone $y = 2 - 2x$ or $f(x) = 2 - 2x$ ir			
	If $(\frac{dy}{dx} \text{ or } f'(x) =) 2 - 2x$ on answer line also award final A1			
	y = 2 - 2x or $f(x) = 2 - 2x$ on answer line			M1A1A0
	When marking (b), a maximum of M1 expansion seen on the previous page in (b)			
	The final A1 must be seen in (b)			
	eg1 (b) no expansion seen with an ar At top of previous page $-x^2 + 2x + 8$		x + 2	M1A1A0
	eg2 (b) no expansion seen with an a In (a) $-x^{2} + 2x + 4x + 8 = -x^{2} + 6x + 6x^{2}$		2 <i>x</i> + 6	M1A0A1ft
	Correct use of product rule and gradient function = $-2x + 2$			3 marks

	Alternative method 1			
	(gradient of curve at $C =$) 2	B1ft	Correct or ft their (b) when $x = 0$ May be implied	
	$-\frac{1}{\text{their 2}} \text{ or } -\frac{1}{2}$	M1	oe ft their 2 Only ft a non-zero numerical value (gradient of normal =) $-\frac{1}{2}$ is B1M1	
	$y = (\text{their} - \frac{1}{2})x + \text{their 8}$ or $y - \text{their 8} = \text{their} - \frac{1}{2}(x - 0)$	M1dep	Must have used gradient of normal not gradient of tangent Correct or ft their 8 from (a) in the form $(0, k)$	
	$0 = (\text{their} - \frac{1}{2})x + \text{their 8}$ or $0 - \text{their 8} = \text{their} - \frac{1}{2}(x - 0)$ or $x = 16$	M1dep	Correct or ft their 8 from (a) in the form (0, <i>k</i>)	
21(c)	x = 16 and $BD = 12$ and $AB = 6$ with correct method seen	A1	oe	
	Alternative method 2			
	(gradient of curve at $C =$) 2	B1ft	Correct or ft their (b) when $x = 0$ May be implied	
	$-\frac{1}{\text{their 2}} \text{ or } -\frac{1}{2}$	M1	oe ft their 2 Only ft a non-zero numerical value (gradient of normal =) $-\frac{1}{2}$ is B1M1	
	$\frac{0 - \text{their 8}}{x - 0} = \text{their} - \frac{1}{2}$ or $x = -\text{their 8} \div \text{their} - \frac{1}{2}$ or $x = 16$	M2dep	oe Correct or ft their 8 from (a) in the form (0, <i>k</i>)	
	x = 16 and $BD = 12$ and $AB = 6with correct method seen$	A1	oe	
	Ade	ditional Gu	lidance	

	Alternative method 1		
	$(x-2)^2 + (2x+1-1)^2 = 16$	M1	oe Eliminates y
	$x^{2}-2x-2x+4+4x^{2} = 16$ or $5x^{2}-4x-12 (= 0)$	M1dep	oe Expands both brackets correctly
22	(5x+6)(x-2) (= 0) or $\frac{4\pm\sqrt{(-4)^2-4\times5\times-12}}{2\times5}$	M1	oe eg $\frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 4 ² for (-4) ² Implied by correct solutions to their 3-term quadratic seen
	(x =) -1.2 and $(x =) 2or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(x =) -\frac{6}{5}$ and $(x =) 2$ with $5x^2 - 4x - 12$ (= 0) seen
	(-1.2, -1.4) and $(2, 5)with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2, 5) with $5x^2 - 4x - 12$ (= 0) seen

	Alternative method 2		
	$x^2 - 2x - 2x + 4 + y^2 - y - y + 1 = 16$	M1	oe Expands both brackets correctly
	$x^{2}-2x-2x+4+(2x+1)^{2}$ -(2x+1)-(2x+1)+1=16 or 5x ² -4x-12 (= 0)	M1dep	oe Eliminates y
22	(5x+6)(x-2) (= 0) or $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 5 \times -12}}{2 \times 5}$	M1	oe eg $\frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 4 ² for (-4) ² Implied by correct solutions to their 3-term quadratic seen
	(x =) -1.2 and $(x =) 2or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(x =) -\frac{6}{5}$ and $(x =) 2$ with $5x^2 - 4x - 12$ (= 0) seen
	(-1.2, -1.4) and $(2, 5)with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2, 5) with $5x^2 - 4x - 12$ (= 0) seen

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

	Alternative method 3		
	$\left(\left(\frac{y-1}{2}\right)-2\right)^2+(y-1)^2=16$	M1	oe Eliminates <i>x</i>
	$\left(\frac{y-1}{2}\right)^2 - 2\left(\frac{y-1}{2}\right) - 2\left(\frac{y-1}{2}\right) + 4$ $+ y^2 - y - y + 1 = 16$ or 5y ² - 18y - 35 (= 0)	M1dep	oe Expands $\left(\left(\frac{y-1}{2}\right)-2\right)^2$ and $(y-1)^2$ correctly
22	(5y + 7)(y - 5) = 0 or $\frac{-18 \pm \sqrt{(-18)^2 - 4 \times 5 \times -35}}{2 \times 5}$	M1	oe eg $\frac{9}{5} \pm \sqrt{\frac{256}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 18^2 for $(-18)^2$ Implied by correct solutions to their 3-term quadratic seen
	(y =) -1.4 and $(y =) 5or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5y^2 - 18y - 35 (= 0) seen$	A1	oe eg $(y =) -\frac{7}{5}$ and $(y =) 5$ with $5y^2 - 18y - 35$ (= 0) seen
	(−1.2, −1.4) and (2, 5) with 5y ² − 18y − 35 (= 0) seen	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2, 5) with $5y^2 - 18y - 35$ (= 0) seen

Alternative method 4 and Additional Guidance continue on the next page

	Alternative method 4			
	$x^2 - 2x - 2x + 4 + y^2 - y - y + 1 = 16$	M1	oe Expands both brackets co	rrectly
	$\left(\frac{y-1}{2}\right)^2 - 2\left(\frac{y-1}{2}\right) - 2\left(\frac{y-1}{2}\right) + 4 + y^2 - y - y + 1 = 16$ or $5y^2 - 18y - 35$ (= 0)	M1dep	oe Eliminates <i>x</i>	
22	(5y + 7)(y - 5) = 0 or $\frac{-18 \pm \sqrt{(-18)^2 - 4 \times 5 \times -35}}{2 \times 5}$	M1	oe eg $\frac{9}{5} \pm \sqrt{\frac{256}{25}}$ Correct attempt to solve the quadratic Allow recovery of brackets Allow 18 ² for (-18) ² Implied by correct solution their 3-term quadratic seen	in formula s to
	(y =) -1.4 and $(y =) 5or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5y^2 - 18y - 35 (= 0) seen$	A1	oe eg (y =) $-\frac{7}{5}$ and (y =) with $5y^2 - 18y - 35$ (= 0) s	
	(-1.2, -1.4) and $(2, 5)with 5y^2 - 18y - 35 (= 0) seen$	A1	oe eg $(-\frac{6}{5}, -\frac{7}{5})$ and (2 with $5y^2 - 18y - 35$ (= 0) s	
	Ade	lidance		
	Answers only (no valid working)			Zero
	Both solutions from scale drawing			5 marks
	(2, 5) is often seen without seeing any correct method			Zero
	Allow one miscopy for up to M3A0A0			

	Alternative method 1		
	Replaces tan x with $\frac{\sin x}{\cos x}$ at least once in given expression	M1	eg $\frac{1}{\frac{\sin^2 x}{\cos^2 x}} - \frac{1}{\sin^2 x}$
23	Correct steps leading to the single fraction $\frac{\cos^2 x - 1}{\sin^2 x}$ or $\frac{\cos^2 x - 1}{1 - \cos^2 x}$ or $\frac{1 - \sin^2 x - 1}{\sin^2 x}$ or $\frac{\cos^2 x - \cos^2 x - \sin^2 x}{\sin^2 x}$ or $\frac{-\sin^2 x}{\sin^2 x}$	M1dep	
	$\frac{\cos^2 x - 1}{\sin^2 x} = \frac{-\sin^2 x}{\sin^2 x} = -1$ or $\frac{\cos^2 x - 1}{1 - \cos^2 x} = -1$ or $\frac{1 - \sin^2 x - 1}{\sin^2 x} = -1$ or $\frac{-\sin^2 x}{\sin^2 x} = -1$	A1	Must see all steps leading to –1

Alternative method 2 and Additional Guidance continue on the next page

	Alternative method 2				
23 cont	Replaces $\tan x$ with $\frac{\sin x}{\cos x}$ at least once in given expression	M1	eg $\frac{\sin^2 x - \frac{\sin^2 x}{\cos^2 x}}{\sin^2 x \frac{\sin^2 x}{\cos^2 x}}$		
	Correct steps leading to the single fraction $\frac{\sin^2 x (\cos^2 x - 1)}{\sin^4 x}$ or $\frac{-\sin^4 x}{\sin^4 x}$	M1dep			
	$\frac{\sin^2 x (\cos^2 x - 1)}{\sin^4 x} = \frac{-\sin^4 x}{\sin^4 x} = -1$ or $\frac{-\sin^4 x}{\sin^4 x} = -1$	A1	Must see all steps leading t	o –1	
	Additional Guidance				
	Allow $\cos^2 \theta$ etc or \cos^2 or c^2 or $(\cos x)^2$ for $\cos^2 x$ etc				
	Condone $\cos x^2$ for $\cos^2 x$ etc				
	Only substituting values for <i>x</i>				
	$\frac{\cos^2 x - 1}{\sin^2 x}$ etc with no working				
	Alt 2 $\frac{\sin^2 x \cos^2 x - \sin^2 x}{\sin^4 x}$ with no further working				
	Any fully correct response that shows how the given expression is equal to -1 is awarded 3 marks				
	eg $\frac{1}{\frac{\sin^2 x}{\cos^2 x}} - \frac{1}{\sin^2 x} = \frac{\cos^2 x}{\sin^2 x} - \frac{1}{\sin^2 x} = \frac{1 - \sin^2 x}{\sin^2 x} - \frac{1}{\sin^2 x}$				
	$= \frac{1}{\sin^2 x} - \frac{\sin^2 x}{\sin^2 x} - \frac{1}{\sin^2 x} = -1$				
	$\cot^2 x - \csc^2 x = -1$			3 marks	

	Alternative method 1				
24	$12(x^2 - 5x) \dots$ or $12(x - 2.5)^2 \dots$	M1	oe eg 12{ $(x^2 - 5x) \dots$ } or 12 $(x^2 - 5x \dots)$		
	$12\{(x - 2.5)^2 - 2.5^2\}$ or $12(x - 2.5)^2 - 75$	M1dep	oe eg 12{ $(x - 2.5)^2 - 2.5^2 \dots$ }		
	$12(x - 2.5)^2 - 12 \times 2.5^2 + 5$ or $12(x - 2.5)^2 - 70$	M1dep	oe eg 12 $(x - 2.5)^2 - 12 \times 2.5^2 + 12 \times \frac{5}{12}$		
	$12\left(\frac{2x-5}{2}\right)^2 - 12 \times 2.5^2 + 5$	M1dep	oe eg $12\left(\frac{2x-5}{2}\right)^2 - 12 \times 2.5^2 + 12 \times \frac{5}{12}$		
	$3(2x-5)^2-70$ or		oe		
	a = 3 $b = 2$ $c = -5$ $d = -70or3(5 - 2x)^2 - 70$	A1			
	or a = 3 $b = -2$ $c = 5$ $d = -70$				

	Alternative method 2				
24	$3(4x^2 - 20x) \dots$ or $3(2x - 5)^2 \dots$	M1	oe eg $3\{(4x^2 - 20x) \dots\}$ or $3(4x^2 - 20x \dots)$		
	$3\{(2x-5)^2-5^2\}\dots$ or $3(2x-5)^2-75\dots$	M1dep	oe eg $3\{(2x-5)^2-5^2\}$		
	$3\{(2x-5)^2-5^2\}+5$	M1dep	oe eg $3\{(2x-5)^2-5^2+\frac{5}{3}\}$		
	$3(2x-5)^2-3 \times 5^2+5$	M1dep	oe eg $3(2x-5)^2 - 3 \times 5^2 + 3 \times \frac{5}{3}$		
	$3(2x-5)^2 - 70$ or a=3 $b=2$ $c=-5$ $d=-70$		oe		
	or $3(5-2x)^2 - 70$	A1			
	or a = 3 $b = -2$ $c = 5$ $d = -70$				
	Additional Guidance				
	For M marks 2.5 may be seen as $\frac{5}{2}$				
	For M marks $(x - 2.5)^2$ may be replaced by $(2.5 - x)^2$ etc				
	Expansion of given form followed by trial and improvement eg1 $3(2x-5)^2 - 70$ (or $a = 3$ $b = 2$ $c = -5$ $d = -70$)				
	eg2 Not fully correct			Zero	