Surname	Other	names
earson dexcel GCE	Centre Number	Candidate Number
A level Further Mat Core Pure Mathema	thematics atics	
Practice Paper 5		
You must have: Mathematical Formulae and	l Statistical Tables (Pink)	Total Mar

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 74.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. The complex number *z* is given by

$$z = \frac{p+2i}{3+pi}$$

where *p* is an integer.

- (a) Express z in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p.
- (b) Given that $\arg(z) = \theta$, where $\tan \theta = 1$ find the possible values of *p*.

(5)

(4)

(4)

		(Total 9 marks)
	$f(x) = 2x^3 - 6x^2 - 7x - 4.$	
(a)	Show that $f(4) = 0$.	(1)
(b)	Use algebra to solve $f(x) = 0$ completely.	(-)

3. The curve C has polar equation

$$r=1+2\cos\theta, \quad 0\leq\theta\leq\frac{\pi}{2}.$$

At the point *P* on *C*, the tangent to *C* is parallel to the initial line.

Given that O is the pole, find the exact length of the line OP.

(Total 7 marks)

(Total 5 marks)

4. Find the general solution of the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = \frac{\ln x}{x}, \quad x > 0,$$

giving your answer in the form y = f(x).

(Total 8 marks)

2.

5. The line *l* passes through the point P(2, 1, 3) and is perpendicular to the plane Π whose vector equation is

$$\mathbf{r}.(\mathbf{i}-2\mathbf{j}-\mathbf{k})=3$$

Find

(a) a vector equation of the line <i>l</i> ,	()
(b) the position vector of the point where l meets Π .	(2)
	(4)
(c) Hence find the perpendicular distance of P from Π .	()
	(2)

(Total 8 marks)

6.		$z = -8 + (8\sqrt{3})i$	
	(a)	Find the modulus of z and the argument of z .	(3)
	Usin	ng de Moivre's theorem,	
	(b)	find z^3 ,	(2)
	(c)	find the values of w such that $w^4 = z$, giving your answers in the form $a + ib$, where $a, b \in \mathbb{R}$.	
			(5)
		(Total 10 mar	:ks)

7. (i) Find, without using a calculator,

$$\int_{3}^{5} \frac{1}{\sqrt{15+2x-x^2}} \, \mathrm{d}x$$

giving your answer as a multiple of π .

(ii) (a) Show that

$$5 \cosh x - 4 \sinh x = \frac{e^{2x} + 9}{2e^x}.$$

(3)

(5)

(b) Hence, using the substitution $u = e^x$ or otherwise, find

$$\int \frac{1}{5\cosh x - 4\sinh x} \, \mathrm{d}x \,. \tag{4}$$

(Total 12 marks)

8. The differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 9x = \cos 3t, \qquad t \ge 0,$$

describes the motion of a particle along the *x*-axis.

- (a) Find the general solution of this differential equation.
- (b) Find the particular solution of this differential equation for which, at t = 0, $x = \frac{1}{2}$

and
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.$$

(5)

(2)

(8)

On the graph of the particular solution defined in part (*b*), the first turning point for t > 30 is the point *A*.

(c) Find approximate values for the coordinates of A.

(Total 15 marks)

TOTAL FOR PAPER: 74 MARKS