Sumame	Other	names
Pearson Edexcel GCE	Centre Number	Candidate Number
A level Further Ma Core Pure Mathema	thematics atics	
Practice Paper 3		
You must have: Mathematical Formulae and	d Statistical Tables (Pink)	Total Mark

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 70.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. (a) Express $\frac{2}{4r^2-1}$ in partial fractions.

(b) Hence use the method of differences to show that

$$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{n}{2n+1}$$
(3)

(Total 5 marks)

$$z_1 = 3i$$
 and $z_2 = \frac{6}{1 + i\sqrt{3}}$

(a) Express z_2 in the form a + ib, where a and b are real numbers.

(2)

(2)

(b) Find the modulus and the argument of z_2 , giving the argument in radians in terms of π .

(4)

(c) Show the three points representing z_1 , z_2 and $(z_1 + z_2)$ respectively, on a single Argand diagram.

(2)

(Total 8 marks)

- 3. The curve C_1 has equation $y = 3\sinh 2x$, and the curve C_2 has equation $y = 13 3e^{2x}$.
 - (a) Sketch the graph of the curves C_1 and C_2 on one set of axes, giving the equation of any asymptote and the coordinates of points where the curves cross the axes.

(4)

(b) Solve the equation $3\sinh 2x = 13 - 3e^{2x}$, giving your answer in the form $\frac{1}{2} \ln k$, where k is an integer.

(5)

(Total 9 marks)

4. (a) Use the standard results for
$$\sum_{r=1}^{n} r$$
 and $\sum_{r=1}^{n} r^2$ to show that

$$\sum_{r=1}^{n} (3r^2 + 8r + 3) = \frac{1}{2}n(2n+5)(n+3)$$

for all positive integers *n*.

Given that

$$\sum_{r=1}^{12} \left(3r^2 + 8r + 3 + k(2^{r-1}) \right) = 3520$$

(b) find the exact value of the constant *k*.

(4)

(5)

(Total 9 marks)

Figure 1 shows a curve *C* with polar equation $r = a\sin 2\theta$, $0 \le \theta \le \frac{\pi}{2}$, and a half-line *l*.

The half-line *l* meets *C* at the pole *O* and at the point *P*. The tangent to *C* at *P* is parallel to the initial line. The polar coordinates of *P* are (R, ϕ) .

- (a) Show that $\cos \phi = \frac{1}{\sqrt{3}}$
- (b) Find the exact value of *R*.

The region S, shown shaded in Figure 1, is bounded by C and l.

(c) Use calculus to show that the exact area of S is

$$\frac{1}{36}a^{2}\left(9\arccos\left(\frac{1}{\sqrt{3}}\right)+\sqrt{2}\right)$$
(7)

(Total 15 marks)

(6)

(2)

$$\mathbf{f}(n) = 2^n + 6^n$$

- (a) Show that $f(k+1) = 6f(k) 4(2^k)$.
- (b) Hence, or otherwise, prove by induction that, for $n \in \mathbb{Z}^+$, f(n) is divisible by 8.

(4)

(3)

(Total 7 marks)

7. At the start of the year 2000, a survey began of the number of foxes and rabbits on an island. At time *t* years after the survey began, the number of foxes, *f*, and the number of rabbits, *r*, on the island are modelled by the differential equations

$$\frac{\mathrm{d}f}{\mathrm{d}t} = 0.2f + 0.1r$$
$$\frac{\mathrm{d}r}{\mathrm{d}t} = -0.2f + 0.4r$$

(a) Show that
$$\frac{d^2 f}{dt^2} - 0.6 \frac{df}{dt} + 0.1 f = 0$$

(3)

(b) Find a general solution for the number of foxes on the island at time t years.

(4)

(c) Hence find a general solution for the number of rabbits on the island at time t years.

(3)

At the start of the year 2000 there were 6 foxes and 20 rabbits on the island.

- (d) (i) According to this model, in which year are the rabbits predicted to die out?
 - (ii) According to this model, how many foxes will be on the island when the rabbits die out?
 - (iii) Use your answers to parts (i) and (ii) to comment on the model.

(7)

(Total 17 marks)

TOTAL FOR PAPER: 70 MARKS

6.