Write your name here		
Surname	Other nam	nes
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Further M Advanced Paper 2: Core Pure N		tics
Sample Assessment Material for first to	reaching September 2017	Paper Reference
Time: 1 hour 30 minutes		9FM0/02
You must have: Mathematical Formulae and Sta	atistical Tables calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S54439A ©2017 Pearson Education Ltd.

Answer ALL questions. Write your answers in the spaces provided.

1. The roots of the equation

$$x^3 - 8x^2 + 28x - 32 = 0$$

are α , β and γ

Without solving the equation, find the value of

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

(ii)
$$(\alpha + 2)(\beta + 2)(\gamma + 2)$$

(iii)
$$\alpha^2 + \beta^2 + \gamma^2$$

(8)

Question 1 continued
(Total for Question 1 is 8 marks)

2. The plane Π_1 has vector equation

$$\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 5$$

(a) Find the perpendicular distance from the point (6, 2, 12) to the plane Π_1

(3)

The plane Π_2 has vector equation

$$\mathbf{r} = \lambda(2\mathbf{i} + \mathbf{j} + 5\mathbf{k}) + \mu(\mathbf{i} - \mathbf{j} - 2\mathbf{k})$$

where λ and μ are scalar parameters.

(b) Show that the vector $-\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is perpendicular to Π_2

(2)

(c) Show that the acute angle between Π_1 and Π_2 is 52° to the nearest degree.

(3)

 1

Question 2 continued	
-	Challen Orank 2: 9
	Cotal for Question 2 is 8 marks)

3. (i)

$$\mathbf{M} = \begin{pmatrix} 2 & a & 4 \\ 1 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}$$

where a is a constant.

(a) For which values of a does the matrix M have an inverse?

(2)

Given that M is non-singular,

(b) find \mathbf{M}^{-1} in terms of a

(4)

(ii) Prove by induction that for all positive integers n,

$$\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^n = \begin{pmatrix} 3^n & 0 \\ 3(3^n - 1) & 1 \end{pmatrix}$$

(6)

Question 3 continued	
	(Total for Question 3 is 12 marks)

- **4.** A complex number z has modulus 1 and argument θ .
 - (a) Show that

$$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta, \qquad n \in \mathbb{Z}^{+}$$
(2)

(b) Hence, show that

$$\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3) \tag{5}$$

Question 4 continued	
(T	otal for Question 4 is 7 marks)
	Zur 101 Zursuon 1 15 / marks)

_	
J	•

$y = \sin x \sinh x$

(a) Show that $\frac{d^4y}{dx^4} = -4y$

- **(4)**
- (b) Hence find the first three non-zero terms of the Maclaurin series for y, giving each coefficient in its simplest form.
- (4)
- (c) Find an expression for the *n*th non-zero term of the Maclaurin series for y.
- **(2)**

Question 5 continued
(Total for Question 5 is 10 marks)

6. (a) (i) Show on an Argand diagram the locus of points given by the values of z satisfying

$$|z - 4 - 3\mathbf{i}| = 5$$

Taking the initial line as the positive real axis with the pole at the origin and given that $\theta \in [\alpha, \alpha + \pi]$, where $\alpha = -\arctan\left(\frac{4}{3}\right)$,

(ii) show that this locus of points can be represented by the polar curve with equation

$$r = 8\cos\theta + 6\sin\theta$$

(6)

The set of points A is defined by

$$A = \left\{ z : 0 \leqslant \arg z \leqslant \frac{\pi}{3} \right\} \cap \left\{ z : |z - 4 - 3\mathbf{i}| \leqslant 5 \right\}$$

- (b) (i) Show, by shading on your Argand diagram, the set of points A.
 - (ii) Find the **exact** area of the region defined by A, giving your answer in simplest form.

(7)

Question 6 continued	
	(T. 4.16. O. 21. 42. 42. 42.
	(Total for Question 6 is 13 marks)

7. At the start of the year 2000, a survey began of the number of foxes and rabbits on an

At time t years after the survey began, the number of foxes, f, and the number of rabbits, r, on the island are modelled by the differential equations

$$\frac{\mathrm{d}f}{\mathrm{d}t} = 0.2 f + 0.1 r$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -0.2 f + 0.4 r$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -0.2f + 0.4r$$

(a) Show that $\frac{d^2 f}{dt^2} - 0.6 \frac{df}{dt} + 0.1 f = 0$

(3)

(b) Find a general solution for the number of foxes on the island at time t years.

(4)

(c) Hence find a general solution for the number of rabbits on the island at time t years.

(3)

At the start of the year 2000 there were 6 foxes and 20 rabbits on the island.

- (d) (i) According to this model, in which year are the rabbits predicted to die out?
 - (ii) According to this model, how many foxes will be on the island when the rabbits die out?
 - (iii) Use your answers to parts (i) and (ii) to comment on the model.

(7)

Question 7 continued
(Total for Question 7 is 17 marks)
MODILE NOR REPORT OF THE PERSON
TOTAL FOR PAPER IS 75 MARKS