A Level Core Pure Mathematics 1 Mock Paper Set 1 (9FM0/01) Mark Scheme

Question	Scheme	Marks	AOs
1(a)	$f(x) = e^{2x} \cos x \Longrightarrow f'(x) = 2e^{2x} \cos x - e^{2x} \sin x$	M1	1.1a
	$f''(x) = 4e^{2x}\cos x - 2e^{2x}\sin x - (2e^{2x}\sin x + e^{2x}\cos x)$	M1 A1	1.1b 1.1b
	$f''(x) = 3e^{2x} \cos x - 4e^{2x} \sin x = pe^{2x} \cos x + q(2e^{2x} \cos x - e^{2x} \sin x)$ $\Rightarrow p = \dots, q = \dots$	M1	3.1a
	$\mathbf{f}''(x) = -5\mathbf{f}(x) + 4\mathbf{f}'(x)$	A1	2.1
		(5)	
(b)	f(0) = 1, f'(0) = 2, f''(0) = 3, f'''(0) = 2, f''''(0) = -7, f''(0) = -38	M1	1.1b
	$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) +$	M1	1.1b
	$f(x) \approx 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{3} - \frac{7x^4}{24} - \frac{19x^5}{60}$	A1	2.2a
		(3)	
		(8	marks)
	Notes		
 (a) M1: Realises the need to use the product rule and attempts the first derivative M1: Applies the product rule again to find the second derivative A1: Correct second derivative simplified or un-simplified M1: Uses their derivatives in order to obtain values for <i>p</i> and <i>q</i> A1: Completes the proof and obtains the correct values of <i>p</i> and <i>q</i> (b) 			

M1: Attempts all 5 derivatives at x = 0 using the result from part (a)

M1: Uses the correct Maclaurin series including the factorials

A1: Correct expression

Question	Scheme	Marks	AOs	
2(a)	$z = \cos\theta + i\sin\theta \Longrightarrow \frac{1}{z} = \cos\theta - i\sin\theta$	M1	2.1	
	$\Rightarrow \left(z + \frac{1}{z}\right)^{5} = \left(2\cos\theta\right)^{5} = 32\cos^{5}\theta$			
	$\left(z+\frac{1}{z}\right)^{5} = z^{5} + \frac{1}{z^{5}} + 5\left(z^{3} + \frac{1}{z^{3}}\right) + 10\left(z+\frac{1}{z}\right)$	M1 A1	2.1 1.1b	
	$= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$	M1	2.1	
	$\cos^5\theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)^*$	A1*	1.1b	
		(5)		
(b)	$\cos\theta - \cos 5\theta = 5\cos 3\theta \Longrightarrow \cos\theta = 5\cos 3\theta + \cos 5\theta = 16\cos^5\theta - 10\cos\theta$	M1	3.1a	
	$16\cos^5\theta - 11\cos\theta = 0$	A1	1.1b	
	$\cos\theta \left(16\cos^4\theta - 11\right) = 0 \Longrightarrow \cos\theta = 0, \pm \sqrt[4]{\frac{11}{16}}$	M1	1.1b	
	$\theta = 3.57, \frac{3\pi}{2} (\text{ or } 4.71), 5.86$	A1 A1	1.1b 1.1b	
		(5)		
		(10	marks)	
	Notes			
(a) M1: Begins the proof by demonstrating that $\left(z + \frac{1}{z}\right)^5 = 32\cos^5\theta$				
M1: Attempts to expand $\left(z+\frac{1}{z}\right)^5$ including the binomial coefficients				
A1: Correct expansion				
M1: Uses $z^n + \frac{1}{z^n} = 2\cos n\theta$ to obtain an expression in terms of $\cos 5\theta$, $\cos 3\theta$ and $\cos \theta$				
A1*: Concludes the argument by equating the two expressions leading to the printed answer with				
(b)				
M1: Makes the connection with part (a) and reaches an equation in $\cos\theta$ only				
A1: Correct equation				
$ \begin{bmatrix} M1: Solve \\ \Delta 1 \cdot 2 & corr} \end{bmatrix} $	A 1: 2 correct solutions			
A1: All 3 correct solutions. Ignore extra solutions outside the range but deduct this mark if there				
are extra a	are extra answers in range.			

A Level Core Pure Mathematics 1 Mock Paper Set 1 (9FM0/01) Mark Scheme

Question	Scheme	Marks	AOs	
3	Area enclosed by curve = $\frac{1}{2} \int (7.5 + 1.5 \cos 6\theta)^2 d\theta$	M1	3.1a	
	$(7.5+1.5\cos 6\theta)^2 = 56.25+22.5\cos 6\theta + 2.25\cos^2 6\theta$			
	$= 56.25 + 22.5\cos 6\theta + 2.25\left(\frac{\cos 12\theta + 1}{2}\right)$	M1	2.1	
	$\frac{1}{2}\int (7.5+1.5\cos 6\theta)^2 d\theta = \frac{459}{16}\theta + \frac{15}{8}\sin 6\theta + \frac{3}{64}\sin 12\theta(+c)$	A1ft	1.1b	
	Area enclosed by curve = $\left[\frac{459}{16}\theta + \frac{15}{8}\sin 6\theta + \frac{3}{64}\sin 12\theta\right]_{0}^{2\pi}$	M1	3.1a	
	$=\frac{459\pi}{8}(=180.24)$	A1	1.1b	
	Total shaded area = $\pi \times 10^2 - "\frac{459\pi}{8}" + \pi \times 5^2$ = 314.15 180.24 + 78.53	M1	3.1a	
	$=\frac{541\pi}{8}\mathrm{mm^2}=2.12\mathrm{cm^2}$	A1	3.2a	
		(7)		
		(7	marks)	
	Notes			
M1: A correct strategy identified for finding the area enclosed by the polar curve using a correct formula				
M1: Squares and uses $\cos^2 6\theta = \frac{\pm 1 \pm \cos 12\theta}{2}$ to obtain an expression in an integrable form				
A1ft: Correct follow through integration				
M1: Correct use of correct limits (e.g. may use $0 \rightarrow 2\pi$ or $2 \times (0 \rightarrow \pi)$ etc.)				
A1: Correct area enclosed by the curve				
MI: Fully	M1: Fully correct strategy for obtaining the area to be painted			

A Level Core Pure Mathematics 1 Mock Paper Set 1 (9FM0/01)

Mark Scheme

Question	Scheme	Marks	AOs	
4(a)	$\frac{1}{(5r-2)(5r+3)} \equiv \frac{A}{5r-2} + \frac{B}{5r+3} \Longrightarrow A = \dots, B = \dots,$ $\left(\text{NB} \ A = \frac{1}{5} \ B = -\frac{1}{5} \right)$	M1	3.1a	
	$\sum_{r=1}^{n} \frac{1}{(5r-2)(5r+3)}$ $\frac{1}{5} \left(\frac{1}{3} - \frac{1}{8} + \frac{1}{8} - \frac{1}{13} + \dots + \frac{1}{5n-7} - \frac{1}{5n-2} + \frac{1}{5n-2} - \frac{1}{5n+3} \right)$	M1	2.1	
	$=\frac{1}{5}\left(\frac{1}{3}-\frac{1}{5n+3}\right)$	A1	1.1b	
	$=\frac{1}{5}\left(\frac{5n+3-3}{3(5n+3)}\right)$	M1	1.1b	
	$=\frac{n}{3(5n+3)}$	A1	2.2a	
		(5)		
(b)	$\sum_{r=10}^{50} \frac{1}{(5r-2)(5r+3)} = f(50) - f(9 \text{ or } 10)$	M1	1.1b	
	$=\frac{50}{3(5\times50+3)}-\frac{9}{3(5\times9+3)}=\frac{41}{12144}$	A1	1.1b	
		(2)		
		(7	marks)	
Notes				
 (a) M1: A complete strategy to find <i>A</i> and <i>B</i> e.g. partial fractions M1: Starts the process of differences to identify the relevant fractions at the start and end A1: Correct fractions that do not cancel M1: Attempt common denominator A1: Correct answer 				
M1: Uses the answer to part (a) to calculate $f(50) - f(9 \text{ or } 10)$				

A1: Correct exact answer

A Level Core Pure Mathematics 1 Mock Paper Set 1 (9FM0/01) Mat

Mark	Scheme
------	--------

Question	Scheme	Marks	AOs
5(a)	$(t+4)\frac{\mathrm{d}v}{\mathrm{d}t} + 5v = 10(t+4) \Longrightarrow \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{5v}{(t+4)} = 10$	M1	1.1b
	IF = $e^{\int \frac{5}{t+4} dt} = (t+4)^5 \Longrightarrow v(t+4)^5 = \int 10(t+4)^5 dt$	M1	3.1b
	$v(t+4)^5 = \frac{5}{3}(t+4)^6 + c$	A1	1.1b
	$t = 0, v = 0 \Longrightarrow c = -\frac{20480}{3}$	M1	3.4
	$t = 3 \Longrightarrow v = \frac{5}{3} \times 7 - \frac{20480}{3 \times 7^5}$	M1	3.4
	$v = 11.3 (ms^{-1})$	A1	1.1b
		(6)	
(b)	For large values of <i>t</i> , the velocity increases	B1	1.1b
		(1)	
(c)	 E.g. The raindrop may hit an obstacle as it falls The raindrop is unlikely to be at rest initially The raindrop may be affected by the wind as it falls The raindrop will eventually hit the ground 	B1	3.5b
		(1)	
		(8	marks)
	Notes		
 (a) M1: Divid M1: Uses equation A1: Corre M1: Interp M1: Uses A1: Corre (b) B1: Make (c) 	les through by $(t + 4)$ the model to find the integrating factor and attempts the solution of the ct solution prets the initial conditions to find the constant of integration their solution to the problem to find the velocity after 3 seconds ct value s a sensible comment regarding the motion of the raindrop e.g. as <i>t</i> incr	e different	ial does v
B1: States a limitation of the model – see scheme for examples			

Question	Scheme	Marks	AOs
6	When $n = 1, 3^n - 2^n = 1$		
	When $n = 2$, $3^n - 2^n = 9 - 4 = 5$	B 1	2.2a
	So the result is true for $n = 1$ and $n = 2$		
	Assume true for $n = k$ and $n = k + 1$ so	N/1	2.1
	$u_k = 3^k - 2^k$ and $u_{k+1} = 3^{k+1} - 2^{k+1}$	MI	2.4
	$u_{k+2} = 5\left(3^{k+1} - 2^{k+1}\right) - 6\left(3^k - 2^k\right)$	M1	1.1b
	$u_{k+2} = 5 \times 3^{k+1} - 5 \times 2^{k+1} - 2 \times 3^{k+1} + 3 \times 2^{k+1}$	A1	1.1b
	$=3 \times 3^{k+1} - 2 \times 2^{k+1}$	A 1	2.1
	$=3^{k+2}-2^{k+2}$	AI	2.1
	If the statement is true for $n = k$ and $n = k + 1$ then it has been shown		
	true for $n = k + 2$ and as it is true for $n = 1$ and $n = 2$, the statement is	A1	2.4
	true for all positive integers <i>n</i> .		
		(6)	
		(6	marks)
	Notes		
B1: Show	s the statement is true for $n = 1$ and $n = 2$		
M1: Make	es a statement that assumes the result is true for $n = k$ and $n = k + 1$		
M1: Subs	titutes the assumption statements into the given result		
A1: Corre	ct expression that has been processed correctly to be in terms of 3^{k+1} ar	nd 2^{k+1}	
A1: Obtains $3^{k+2} - 2^{k+2}$ with no errors and all working shown			
A1: Corre	ct complete conclusion that may be part of a narrative throughout the p	roof	

A Level Core Pure Mathematics 1 Mock Paper Set 1 (9FM0/01)

Mark Scheme

Question	Scheme	Marks	AOs	
7(a)	r = 8i + 2j + 10k + k(2i - 3j + 4k) or			
	(8i+2j+10k).(2i-3j+4k)=16-6+40	M1	1.1b	
	$(8\mathbf{i}+2\mathbf{j}+10\mathbf{k}+k(2\mathbf{i}-3\mathbf{j}+4\mathbf{k})).(2\mathbf{i}-3\mathbf{j}+4\mathbf{k}) = -8 \Longrightarrow k = -2$			
	$\Rightarrow d = 2(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = \sqrt{116} \text{ or } 2\sqrt{29}$	М1	2.10	
	Or	A1	5.1a 1.1b	
	$d = \frac{(8\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) \cdot ((2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) + 8)}{58} = \frac{58}{58}$			
	$u = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$			
		(3)		
(b)	(4i + j - 7k).(i + 3j + k) = 4 + 3 - 7 = 0	M1	1 11	
	$(4\mathbf{i} + \mathbf{j} - 7\mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 8 - 1 - 7 = 0$	IVI I	1.10	
	As $4\mathbf{i} + \mathbf{j} - 7\mathbf{k}$ is perpendicular to both direction vectors of Π_2 then it	A 1	2.22	
	must be perpendicular to Π_2		2.24	
(a)		(2)		
(0)	$(4\mathbf{i} + \mathbf{j} - 7\mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = 8 - 3 - 28 = -23$	M1	1.1b	
	$\sqrt{4^2 + 1^2 + 7^2} \sqrt{2^2 + 3^2 + 4^2} \cos \theta = -23$			
	$\Rightarrow \cos \theta = \frac{-23}{-23}$	M1	2.1	
	$\sqrt{66}\sqrt{29}$			
	$\theta = 58^{\circ}$	A1	1.1b	
		(3)		
(d)	$\frac{4x + y - 7z = 0 \text{ and } 2x - 3y + 4z = -8}{(2x - 3y - 4z)^2 + (2x - 3y - 4z)^2}$			
	$x = 0 \to \left(0, \frac{56}{17}, \frac{8}{17}\right), y = 0 \to \left(-\frac{28}{15}, 0, -\frac{16}{15}\right), z = 0 \to \left(-\frac{4}{7}, \frac{16}{7}, 0\right)$	M1	3.1a	
	$\Rightarrow dir = 17\mathbf{i} + 30\mathbf{j} + 14\mathbf{k}$	A1	1.1b	
	$\mathbf{r} = \frac{56}{100} \mathbf{i} + \frac{8}{100} \mathbf{k} + \lambda (17\mathbf{i} + 30\mathbf{i} + 14\mathbf{k})$	M1	1.1b	
	$17 \frac{17}{17} \frac$	A1	2.5	
		(4)		
	NT. 4	(12	marks)	
	INOTES			
(a) M1: Starts	s by attempting to find an appropriate scalar product or finding the para	metric eq	uation	
of the perpendicular line				
M1: A complete strategy to establish the required distance				
A1: Correct exact answer (allow any exact form)				
M1: Attempts both scalar products				
A1: Makes a correct deduction				
(c) M1. Colorlates the secles are destined in the first second sector of the second sector of the second seco				
M1: Calculates the scalar product between the normal vectors M1: Applies the scalar product formula with their -23 to find a value for $\cos\theta$				
A1: Correct answer				

(d)

M1: Attempts to find the direction e.g. by finding 2 points on the line or uses vector product A1: Correct direction of required line

M1: Uses their direction and a point on the line to form a vector equation for the line

A1: Correct equation using correct notation

A Level Core Pure Mathematics 1 Mock Paper Set 1 (9FM0/01)

Mark Scheme

Question	Scheme	Marks	AOs
8(a)	$y = \frac{dx}{dt} + 5x - 51 \Longrightarrow \frac{dy}{dt} = \frac{d^2x}{dt^2} + 5\frac{dx}{dt}$	B1	2.1
	$\Rightarrow \frac{d^2 x}{dt^2} + 5\frac{dx}{dt} = 12x - 6\left(\frac{dx}{dt} + 5x - 51\right)$	M1	2.1
	$\Rightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 11\frac{\mathrm{d}x}{\mathrm{d}t} + 18x = 306*$	A1*	1.1b
		(3)	
(b)	$m^2 + 11m + 18 = 0 \Longrightarrow m = \dots$	M1	3.4
	m = -2, -9	A1	1.1b
	$x = A e^{\alpha t} + B e^{\beta t}$	M1	3.4
	$x = Ae^{-9t} + Be^{-2t}$	A1	1.1b
	PI: Try $x = k \Longrightarrow 18k = 306$ $\Longrightarrow k = 17$	M1	3.4
	$GS: x = Ae^{-9t} + Be^{-2t} + 17$	A1ft	1.1b
		(6)	
(c)	$y = \frac{dx}{dt} + 5x - 51 \Longrightarrow y = -9Ae^{-9t} - 2Be^{-2t} + 5Ae^{-9t} + 5Be^{-2t} + 85 - 51$	M1	3.4
	$y = 3Be^{-2t} - 4Ae^{-9t} + 34$	A1	1.1b
		(2)	
(d)	$0 = A + B + 17, \ 0 = 3B - 4A + 34 \Longrightarrow A =, B =$		
	(NB $A = -\frac{17}{7}, B = -\frac{102}{7}$)	M1	3.3
	$x = 17 - \frac{17}{7}e^{-9t} - \frac{102}{7}e^{-2t}, y = 34 + \frac{68}{7}e^{-9t} - \frac{306}{7}e^{-2t}$	A1	1.1b
	$\frac{dx}{dt} = \frac{dy}{dt} \Longrightarrow \frac{153}{7} e^{-9t} + \frac{204}{7} e^{-2t} = -\frac{612}{7} e^{-9t} + \frac{612}{7} e^{-2t} \Longrightarrow e^{k} = \alpha$	M1	3.1b
	$e^{7t} = \frac{15}{8} \Longrightarrow 7t = \ln\left(\frac{15}{8}\right) \Longrightarrow t = \frac{1}{7}\ln\left(\frac{15}{8}\right)$	M1	1.1b
	= 5.39 minutes	A1	3.2a
		(5)	
(e)	 E.g. The model suggests that, in the long term, the amount of antibiotic in the blood (and/or the body tissue) will remain constant and this is unlikely 	B1	3.5a
		(1)	
	(17 ma		
Notes			
(a)			
B1: Differ	entiates the first equation with respect to t correctly		
M1: Proce	eds to the printed answer by substituting into the second equation		
A1*: Achi	eves the printed answer with no errors		

(b)

M1: Uses the model to form and solve the Auxiliary Equation

A1: Correct roots of the AE

M1: Uses the model to form the Complementary Function

A1: Correct CF

M1: Chooses the correct form of the PI according to the model and uses a complete method to find the PI

A1ft: Combines their CF and PI to give *x* in terms of *t*

(c)

M1: Uses the model and their answer to part (b) to give y in terms of t

A1: Correct equation

(d)

M1: Realises the need to use the initial conditions to establish the values of their constants

A1: Correct particular solutions for *x* and *y*

M1: Differentiates both expressions, sets them equal and proceeds to reach an equation of the form $e^k = \alpha$

M1: Correct use of logarithms to reach t = ...

A1: Correct value

(e)

B1: Suggests a suitable evaluation of the model