Question	Scheme	Marks	AOs	
1(i)	$\alpha + \beta + \gamma = \frac{3}{2}, \ \alpha\beta + \alpha\gamma + \beta\gamma = 2, \ \alpha\beta\gamma = -\frac{7}{2}$	B1	3.1a	
	$\frac{3}{\alpha} + \frac{3}{\beta} + \frac{3}{\gamma} = \frac{3(\alpha\beta + \alpha\gamma + \beta\gamma)}{\alpha\beta\gamma}$	M1	1.1b	
	$=3(2)\div -\frac{7}{2}=-\frac{12}{7}$	A1ft	1.1b	
		(3)		
(ii)	$(\alpha-2)(\beta-2)(\gamma-2)=(\alpha\beta-2\alpha-2\beta+4)(\gamma-2)$	M1	1.1b	
	$= \alpha\beta\gamma - 2(\alpha\beta + \alpha\gamma + \beta\gamma) + 4(\alpha + \beta + \gamma) - 8$	A1	1.1b	
	$= -\frac{7}{2} - 2(2) + 4\left(\frac{3}{2}\right) - 8 = -\frac{19}{2}$	A1	1.1b	
		(3)		
	Alternative			
	$2(x+2)^{3}-3(x+2)^{2}+4(x+2)+7=0$	M1	1.1b	
	$= \dots + 16 + \dots - 12 + \dots + 8 + 7 = 19$	A1	1.1b	
	$(\alpha - 2)(\beta - 2)(\gamma - 2) = -\frac{19}{2}$	A1	1.1b	
		(3)		
(iii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	3.1a	
	$=\left(\frac{3}{2}\right)^2 - 2(2) = -\frac{7}{4}$	A1ft	1.1b	
		(2)		
		(8	marks)	
	Notes			
(i) B1: Ide	ntifies the correct values for all 3 expressions (can score anywhere)			
MI: Uses	a correct identity			
A1ft: Correct value (follow through their $\frac{3}{2}, 2, -\frac{7}{2}$)				
(ii) M1: Attempts to expand				
A1: Correct expansion				
A1: Correct value				
Alternative:				
M1: Subst	itutes $(x + 2)$ for x in the given cubic			
A1: Calcu	lates the correct constant term			
(iii) M1: E	(iii) M1: Establishes the correct identity			

A1ft: Correct value (follow through their $\frac{3}{2}, 2, -\frac{7}{2}$)

Question	Scheme	Marks	AOs
2(a)(i)	$a\cos^2\frac{\pi}{3} = 1 \Longrightarrow a = \dots$ or $a\cos^2\frac{\pi}{6} = 3 \Longrightarrow a = \dots$	M1	3.4
	<i>a</i> = 4	A1	2.2b
(ii)	$b \tan \frac{\pi}{3} - b \tan \frac{\pi}{6} = 2 \Longrightarrow b = \dots$	M1	3.4
	$b = \sqrt{3}$	A1	2.2b
		(4)	
(b)	$V = \pi \int x^2 dy = \pi \int 16 \cos^4 \theta \times \sqrt{3} \sec^2 \theta d\theta$	M1	3.4
	$=16\pi\sqrt{3}\int\cos^2\theta\mathrm{d}\theta$	A1	1.1b
	$=16\pi\sqrt{3}\int\frac{\cos 2\theta+1}{2}\mathrm{d}\theta$	M1	3.1a
	$=8\pi\sqrt{3}\left[\frac{1}{2}\sin 2\theta+\theta\right]$	A1	1.1b
	$=8\pi\sqrt{3}\left[\frac{1}{2}\sin 2\theta + \theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = 8\pi\sqrt{3}\left(\frac{\sqrt{3}}{4} + \frac{\pi}{3} - \frac{\sqrt{3}}{4} - \frac{\pi}{6}\right)$	M1	3.4
	$=\frac{4\pi^2\sqrt{3}}{3}=22.8\ {\rm cm}^3$	A1	1.1b
		(6)	
		(10	marks)
	Notes		
 (a) M1: Interprets the information from the model and uses the parametric form of <i>x</i> to determine the value of <i>a</i> A1: Correct value for <i>a</i> M1: Interprets the information from the model and uses the parametric form of <i>y</i> to find <i>b</i> A1: Correct value for <i>b</i> (b) M1: Uses the correct value of revolution formula and the correct value for <i>b</i> 			

A1: Correct simplified integral M1: Uses a correct double angle identity on the integrand to achieve a suitable form for

integration

A1: Correct integration

M1: Correct use of correct limits according to the model

A1: Correct volume (allow exact or awrt 22.8)

B1ft: Area between their rays and within the circle shaded

(c) M1: Correct strategy to find the base (or angle) of the triangular part

A1: Correct length or angle

M1: Correct method for the area of the triangle

M1: Correct strategy for the area of the sector

A1: Correct answer (awrt 66.1)

Question	Scheme	Marks	AOs
4(a)	$\begin{vmatrix} 1 & -3 & 2 \\ k & 1 & -1 \\ 6 & -5 & k - 1 \end{vmatrix} = k - 1 - 5 + 3(k(k - 1) + 6) + 2(-5k - 6)$	M1 A1	3.1a 1.1b
	$3k^2 - 12k = 0 \Longrightarrow k = \dots$	M1	3.1a
	k = 0 or 4	A1	1.1b
		(4)	
(b)(i)	$ \begin{pmatrix} 1 & -3 & 2 \\ 5 & 1 & -1 \\ 6 & -5 & 4 \end{pmatrix}^{-1} = \frac{1}{15} \begin{pmatrix} -1 & 2 & 1 \\ -26 & -8 & 11 \\ -31 & -13 & 16 \end{pmatrix} $	M1 A1	1.1b 1.1b
	$\frac{1}{15} \begin{pmatrix} -1 & 2 & 1 \\ -26 & -8 & 11 \\ -31 & -13 & 16 \end{pmatrix} \begin{pmatrix} -7 \\ -5 \\ 1 \end{pmatrix} = \dots$	M1	1.1b
	$\left(-\frac{2}{15},\frac{233}{15},\frac{298}{15}\right)$	A1	1.1b
(b)(ii)	Three planes that meet at a point.	A1	2.2a
		(5)	
		(9	marks)
	Notes		
 (a) M1: Starts A1: Corre M1: Reali A1: Corre (b) M1: Uses A1: Corre M1: Uses A1: Corre M1: Multi 	is by attempting to find the determinant in terms of k act determinant set that the condition for non-uniqueness is a zero determinant and solve to values k = 5 and attempts the inverse matrix act inverse iplies their inverse by $(-7, -5, 1)^{T}$	ves to find	1 <i>k</i>

A1: Correct exact coordinates A1: Deduces the correct interpretation

Question	Scheme	Marks	AOs
5(a)	$\int \frac{1}{\sqrt{x^2 + 2x + 10}} \mathrm{d}x = \int \frac{1}{\sqrt{(x+1)^2 + 9}} \mathrm{d}x$	M1	3.1a
	$=k\sinh^{-1}\left(\frac{x+a}{b}\right)$	M1	1.1b
	$=\sinh^{-1}\left(\frac{x+1}{3}\right)(+c)$	A1	1.1b
		(3)	
(b)	$\int_{2}^{20} \frac{1}{\sqrt{x^{2} + 2x + 10}} dx = \sinh^{-1} \left(\frac{20 + 1}{3}\right) - \sinh^{-1} \left(\frac{2 + 1}{3}\right)$ $= \ln\left(7 + \sqrt{50}\right) - \ln\left(1 + \sqrt{2}\right) = \ln\frac{7 + \sqrt{50}}{1 + \sqrt{2}}$	M1	1.1b
	$=\frac{1}{(20-2)}\ln\frac{7+\sqrt{50}}{1+\sqrt{2}}$	M1	2.1
	$\frac{1}{18}\ln(3+2\sqrt{2})$ or e.g. $\frac{1}{9}\ln(1+\sqrt{2})$	A1	2.2a
		(3)	
		(6	marks)
	Notes		
(a) M1: Reco A1: Integr A1: Corre (b) M1: Corre	gnises the need to and attempts to complete the square rates to obtain an expression of the required form ct answer with or without $+ c$ ect use of limits and combines ln terms ect applies the method for the mean value for their integration		

A1: Deduces a correct expression

Aleve	I Core Pure Mathematics 2 Mock Paper Set 1 (9FM0/02) Mathematics	ark Sche	eme
Question	Scheme	Marks	AOs
6	When $n = 1$ lhs $= \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ rhs $= \begin{pmatrix} 1 & 1 & \frac{1}{2}(1^2 + 3 \times 1) \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^k = \begin{pmatrix} 1 & k & \frac{1}{2}(k^2 + 3k) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & k & \frac{1}{2}(k^2 + 3k) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} $	M1	1.1b
	$= \begin{pmatrix} 1 & k+1 & 2+k+\frac{1}{2}(k^2+3k) \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{pmatrix}$	A1	1.1b
	$2+k+\frac{1}{2}(k^{2}+3k) = 2+\frac{5}{2}k+\frac{1}{2}k^{2}$ $=\frac{1}{2}(k^{2}+5k+4) = \frac{1}{2}((k+1)^{2}+3(k+1))$	A1	2.1
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers <i>n</i> .	A1	2.4
		(6)	
		(6	marks)
	Notes		
B1: Show M1: Make M1: Atten A1: Corre A1: Corre right hand A1: Corre	s the statement is true for $n = 1$ es a statement that assumes the result is true for $n = k$ npts to multiply the correct matrices ct matrix in terms of k ct matrix in terms of $k + 1$ including sufficient explanation for the elem corner ct complete conclusion	ent at the	top

Question	Scheme	Marks	AOs
7(a)	$4\cosh^{3} x - 3\cosh x \equiv 4\left(\frac{e^{x} + e^{-x}}{2}\right)^{3} - 3\left(\frac{e^{x} + e^{-x}}{2}\right)$	M1	1.2
	$\equiv 4 \left(\frac{e^{3x} + 3e^{x} + 3e^{-x} + e^{-3x}}{8} \right) - 3 \left(\frac{e^{x} + e^{-x}}{2} \right)$	M1	1.1b
	$=\frac{e^{3x}}{2}+\frac{3e^{x}}{2}+\frac{3e^{-x}}{2}+\frac{e^{-3x}}{2}-\frac{3e^{x}}{2}-\frac{3e^{-x}}{2}=\frac{e^{3x}+e^{-3x}}{2}=\cosh 3x^{*}$	A1*	2.1
		(3)	
(b)	$\cosh 3x = 9\cosh x \Longrightarrow 4\cosh^3 x - 3\cosh x = 9\cosh x$ $\cosh^2 x = 3$	M1	3.1a
	$\cosh x = \sqrt{3} \Longrightarrow x = \ln\left(\sqrt{3} + \sqrt{\left(\sqrt{3}\right)^2 - 1}\right)$	M1	1.1b
	$x = \ln(\sqrt{3} + \sqrt{2})$ or $x = \ln(\sqrt{3} - \sqrt{2})$	A1	1.1b
	$x = \ln(\sqrt{3} + \sqrt{2}) \text{ and } x = \ln(\sqrt{3} - \sqrt{2})$ With no "solutions" being found by attempts to solve $\cosh x = 0$ or $\cosh x = -\sqrt{3}$	A1	2.3
		(4)	
(7 marks)			
Notes			
(a) M1: Recalls the definition of coshx in terms of exponentials and substitutes			

M1: Expands the cubed bracket correctly

A1*: Correct proof with no errors

(b)

M1: Uses the result from part (a) and collects terms to make progress in solving the equation

M1: Recalls the definition of \cosh in terms of e or uses the definition of $\cosh^{-1}x$

A1: One correct solution

A1: Both correct solutions and no others from $\cosh x = 0$ or $\cosh x = -\sqrt{3}$

Question	Scheme	Marks	AOs
8(a)	Because $\frac{2}{\sqrt[3]{2-x}}$ is undefined at $x = 2$ and the limits of the integration are either side of this discontinuity.	B1	2.4
		(1)	
(b)	$\int \frac{1}{\sqrt[3]{2-x}} dx = -3(2-x)^{\frac{2}{3}}(+c)$	M1 A1	2.1 1.1b
	$\int_{0}^{5} \frac{2}{\sqrt[3]{2-x}} dx = \int_{0}^{2} \frac{2}{\sqrt[3]{2-x}} dx + \int_{2}^{5} \frac{2}{\sqrt[3]{2-x}} dx$	M1	3.1a
	$= \lim_{a \to 2^{-}} \int_{0}^{a} \frac{2}{\sqrt[3]{2-x}} dx + \lim_{b \to 2^{+}} \int_{b}^{5} \frac{2}{\sqrt[3]{2-x}} dx$ $= \lim_{a \to 2^{-}} \left[-3(2-x)^{\frac{2}{3}} \right]_{0}^{a} + \lim_{b \to 2^{+}} \left[-3(2-x)^{\frac{2}{3}} \right]_{b}^{5}$ $= -3 \left(\lim_{a \to 2^{-}} \left((2-a)^{\frac{2}{3}} - (2-0)^{\frac{2}{3}} \right) \right) + -3 \left(\lim_{b \to 2^{+}} \left((2-5)^{\frac{2}{3}} - (2-b)^{\frac{2}{3}} \right) \right)$	M1	2.1
	$= -3\left(-2^{\frac{2}{3}} + \left(-3\right)^{\frac{2}{3}}\right) = -3\left(\sqrt[3]{9} - \sqrt[3]{4}\right)$	A1	2.2a
		(5)	
		(6	marks)
	Notes		
(a) B1: A corr	rect explanation why the integral is improper		

(b)

M1: Integrates to obtain an expression of the form $k(2-x)^{\frac{2}{3}}$

A1: Correct integration

M1: Adopts the correct strategy of splitting the integral into two with limits $0 \rightarrow 2$ and $2 \rightarrow 5$

M1: Produces a rigorous argument that includes an upper limit for the first integral that

approaches 2 from below and a lower limit for the second integral that starts from 2 from above A1: Correct expression (allow exact equivalents)

Question	Scheme	Marks	AOs	
9(a)	$m^2 + 2m + 1 = 0 \Longrightarrow m = \dots(-1)$	M1	1.1b	
	$CF: y = (At + B)e^{-t}$	M1	2.2a	
	PI : Try $y = kt^2 e^{-t} + c$	B1	2.2a	
	$\frac{dy}{dt} = 2kte^{-t} - kt^{2}e^{-t}, \ \frac{d^{2}y}{dt^{2}} = 2ke^{-t} - 2kte^{-t} + kt^{2}e^{-t} - 2kte^{-t}$ $2ke^{-t} - 4kte^{-t} + kt^{2}e^{-t} + 2(2kte^{-t} - kt^{2}e^{-t}) + kt^{2}e^{-t} + 1 = e^{-t} + 1 \Longrightarrow k = \dots$	M1	1.1b	
	$k = \frac{1}{2} \Longrightarrow PI : y = \frac{1}{2}t^2 e^{-t} + 1$	A1	1.1b	
	$y = CF + PI = (At + B)e^{-t} + \frac{1}{2}t^{2}e^{-t} + 1$	A1	1.1a	
		(6)		
(b)	$t = 0, y = 1 \Longrightarrow B = 0$	M1	3.4	
	$y = (At + 0.5t^{2})e^{-t} + 1 \Longrightarrow \frac{dy}{dt} = (A + t - At - 0.5t^{2})e^{-t}$ $t = 0, \ \frac{dy}{dt} = 9 \Longrightarrow A = 9$	M1	3.4	
	$y = (0.5t^2 + 9t)e^{-t} + 1$	A1	1.1b	
		(3)		
(c)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Longrightarrow 0.5t^2 + 8t - 9 = 0 \Longrightarrow t = \dots$	M1	3.1a	
	$t > 0 \Longrightarrow t = 1.0553 \Longrightarrow y =$	M1	3.4	
	y = 4.50 mg / 1	A1	1.1b	
		(3)		
(d)	$t = 8 \Longrightarrow y = (0.5 \times 8^2 + 9 \times 8)e^{-8} + 1 = 1.03488$			
	• This is close to 1 so the model supports the suggestion that the concentration returns to its initial value after around 8 hours	M1 A1ft	3.4 3.2b	
		(2)		
		(1	4 marks)	
Notes				
(a) M1: Form A1: Deduc B1: Deduc M1: Comp A1: Corre	s and solves the auxiliary equation ces the correct complementary function ces the correct form of the PI given the outcome for the CF plete method to establish the value of k ct PI			

A1: Correct GS

(b)

M1: Uses the model and the initial conditions to find the value of B

M1: Uses the model by differentiating and using the other initial condition to find a value for A A1: Correct PS (c) M1: Solves $\frac{dy}{dt} = 0$ to find *t* when the concentration is a maximum M1: Uses their value of *t* and the model to find the maximum concentration A1: Correct value (d) M1: Uses their model to finds the concentration when t = 8 in order to test the claim A1ft: Follow through their solution but the comment must be consistent with their values.