Mark Scheme

Question	Scheme	Marks	AOs
1 (a)	For trailer: Equation of motion	M1	3.4
	200 - 120 = 500a	A1	1.1b
	For system or lorry: Equation of motion	M1	3.4
	$F - 300 - 120 = 3000 \times 0.16$ or $F - 200 - 300 = 2500 \times 0.16$	A1	1.1b
	$Power = 900 \times 20$	M1	3.3
	<i>P</i> = 18	A1	1.1b
		(6)	
(b)	Inextensibility of tow bar => acceleration of trailer = acceleration of car	B1	2.4
		(1)	
	·	(7 n	narks)
Notes:			
A1: Correc	e model to form equation of motion. t equation e model to form another equation of motion		
A1: Correct			
M1: Use of A1: Correct			
(b)			
(D) B1: Clear en	xplanation		

Question	Scheme	Marks	AOs
2	Conservation of momentum	M1	3.1b
	$2mu - 3mu = 2mv_P + 3mv_Q$	A1	1.1b
	Newton's Impact Law	M1	3.4
	$2ue = -v_P + v_Q$	A1	1.1b
	Solve for v_Q :complete strategy (set up 2 equations and solve) to find v_Q	M1	3.1b
	$v_Q = \frac{u}{5}(4e - 1)$	A1	1.1b
	$e > \frac{1}{4} \Longrightarrow v_Q > 0$	M1	1.1b
	Q reverses its direction *	A1*	2.1
		(8 marks)	

Notes:

M1: All terms needed but condone sign errors

A1: A correct unsimplified equation

M1: Use NIL as a model for the motion with *e* on the correct side of the equation

A1: A correct equation in any form

M1: Solve for v_Q

A1: A correct expression in v_Q and e only

M1: Appropriate statement and inequality (M0 for converse)

A1*: Correct conclusion, fully justified (given answer)

Question	Scheme	Marks	AOs
3	Use work-energy principle to solve the problem	M1	3.4
	$F \times 0.025 = \frac{1}{2} \times 0.6 \times 22.4^2 + 0.6g(1.5 + 0.025)$	A1	1.1b
		A1	1.1b
	F = 6400 or 6380	A1	1.1b
		(4)	
	Ι	(4 n	narks)
Notes:			
M1: All ter	ms needed (M0 if anything other than work-energy used)		
A1: All corr	rect, condone one error		
A1: All corr	rect		
	3SF following use of $g = 9.8$		

Question	Scheme	Marks	AOs
4(a)	Conservation of momentum	M1	3.1a
	$mu = mv_A + mv_B$	A1	1.1b
	Newton's Impact Law	M1	3.4
	$ue = -v_A + v_B$	A1	1.1b
	Overall strategy for solving for either velocity	M1	3.1a
	$v_A = \frac{u}{2}(1-e)$	A1	1.1b
	$v_B = \frac{u}{2}(1+e)$	A1	1.1b
	$\frac{1}{2}m(v_A^2 + v_B^2) = 0.58\frac{1}{2}mu^2 \text{oe}$	M1	3.1a
	$\frac{u^2}{4} \Big[(1+e)^2 + (1-e)^2 \Big] = 0.58u^2$	A1	1.1b
	<i>e</i> = 0.4	A1	1.1b
		(10)	
(b)	Particles move with same speed in same direction as A oe	B1	2.2a
	speed = $\frac{1}{2}u$	B1	2.2a
		(2)	
		(12 n	narks)
Notes:			
A1: CorrecM1: CorrecA1: CorrecM1: SolvingA1: CorrecA1: CorrecA1: Correc	t use of NIL model with e on correct side of equation t equation g for either velocity t expressions for v_A t expressions for v_B a correct strategy to set up an energy equation		
(b) B1: Clear ex	xplanation		
B1: Correct	speed		

Question	Scheme	Marks	AOs
5(a)	Use of Impulse-momentum principle	M1	3.1b
	$\mathbf{I} = 0.5\left\{ \left(2\mathbf{i} + 3\mathbf{j} \right) - \left(4\mathbf{i} - \mathbf{j} \right) \right\} = (-\mathbf{i} + 2\mathbf{j})$	A1	1.1b
	$\left \mathbf{I}\right = \sqrt{\left(-1\right)^2 + 2^2}$	M1	1.1b
	$\sqrt{5}$ (N s)	A1	1.1b
		(4)	
(b)	KE Loss = Initial KE – Final KE	M1	3.4
	$=\frac{1}{2} \times 0.5 \left\{ (4^2 + (-1)^2) - (2^2 + 3^2) \right\}$	A1	1.1b
	= 1 (J)	A1	1.1b
		(3)	
(c)	Resolve velocities along the normal (impulse)	M1	3.1b
	Separation speed = $(2\mathbf{i}+3\mathbf{j}) \cdot \frac{1}{\sqrt{5}} (-\mathbf{i}+2\mathbf{j}) = \frac{4}{\sqrt{5}}$	A1	1.1b
	Approach speed = $(4\mathbf{i} - \mathbf{j}) \cdot \frac{1}{\sqrt{5}} (\mathbf{i} - 2\mathbf{j}) = \frac{6}{\sqrt{5}}$	A1	1.1b
	Use of Newton's Impact Law along normal: $e = \frac{\frac{4}{\sqrt{5}}}{\frac{6}{\sqrt{5}}}$	M1	3.4
	$e = \frac{2}{3}$	A1	1.1b
		(5)	
(d)	Find vector along the wall $\pm (2\mathbf{i} + \mathbf{j})$ and resolve	M1	3.1a
	$0.5 \times (2\mathbf{i} + 3\mathbf{j}) \cdot \frac{1}{\sqrt{5}} (2\mathbf{i} + \mathbf{j}) = \frac{7}{2\sqrt{5}}; 0.5 \times (4\mathbf{i} - \mathbf{j}) \cdot \frac{1}{\sqrt{5}} (2\mathbf{i} + \mathbf{j}) = \frac{7}{2\sqrt{5}}$	A1*	2.4
	Hence momentum conserved 'along the wall' *		
		(2)	0.55
(e)	Wall is modelled as being smooth	B1	3.5b
		(1)	

Notes:
(a)
M1: Difference of momenta and dimensionally correct
A1: Correct unsimplified expression
M1: Must be a sum of squares and dimensionally correct
A1: Correct answer
(b)
M1: Using the model: must be a difference and dimensionally correct
A1: Correct unsimplified expression
A1: cao
(c)
M1: Clear attempt to resolve but condone sin/cos confusion
A1: Allow +/-
A1: Allow +/-
M1: Use of Newton's Impact Law to model impact
A1: cao
(d)
M1: Clear attempt to resolve but condone sin/cos confusion
A1*: Correct justification of given answer
(e)
B1: Correct answer

Mark Scheme

Question	Scheme	Marks	AOs
6(a)	Using work-energy principle to solve the problem	M1	3.1a
	$R = mg$ and use of $F = \mu R$	M1	3.4
	$1 \qquad mg_{(1^2)} \qquad 2$	A1	1.1b
	$\frac{1}{4}mg(l-x) = \frac{mg}{2l}(l^2 - x^2)$	A1	1.1b
	Finding the <i>total</i> distance moved	M1	1.1b
	Distance = $\frac{3l}{2}$	A1	1.1b
		(6)	
(b)	Thrust = $\frac{mg\frac{1}{2}l}{l} = \frac{1}{2}mg$	B1	1.2
	Overall strategy to solve problem by comparing thrust with max friction $(\frac{1}{4}mg)$	M1	3.1a
	<i>P</i> comes to instantaneous rest and then immediately slides back since $\frac{1}{4}mg < \frac{1}{2}mg$	A1*	2.4
		(3)	
(c)	Using work-energy principle to solve the problem	M1	3.1a
	Use of EPE formula	M1	1.2
	$\frac{1}{4}mgy = \frac{mg}{2l}((\frac{1}{2}l)^2 - (\frac{1}{2}l - y)^2)$	A1ft	1.1b
		A1ft	1.1b
	$y = \frac{1}{2}l$; comes to rest at unstretched length position	A1	2.4
		(5)	
(d)	No tension/thrust in spring => no friction	B1	2.4
	<i>P</i> comes to permanent rest at unstretched length position	B1	2.4
		(2)	
	,	(16 mar)	

Notes:
(a)
M1: Must include all terms
M1: Use of μR
A1: Condone 1 error
A1: All correct
M1: Complete method to find the <i>total</i> distance moved
A1: cao
(b)
B1: Use of Hookes' law to obtain force in spring
M1: Compare max friction with thrust
A1*: Correct justification of given answer
(c)
M1: Must include all terms
M1: Use of EPE at least once
A1ft: Condone 1 error, follow through on their answer from (a)
A1ft: All correct, follow through on their answer from (a)
A1: Correct <i>y</i> value and statement
(d)
B1: Clear explanation
B1: Clear explanation

Question	Scheme	Marks	AOs
7(a)	At D, use CLM along wall	M1	3.1a
	$(m)u\cos\theta = (m)v\cos\alpha$	A1	1.1b
	At <i>D</i> , use NIL along normal	M1	3.4
	$eu\sin\theta = v\sin\alpha$	A1	1.1b
	Overall strategy to obtain connection between angles: $e \tan \theta = \tan \alpha$	M1	3.1a
	Use this result at E (second impact on AB)	M1	3.4
		A1	1.1b
	$e \tan(\theta + \alpha) = \tan(90^\circ - \theta)$	A1	1.1b
	Expand and sub for $\tan \alpha$	M1	1.1b
	$1 = e(e+2)\tan^2\theta$	A1*	2.1
		(10)	
(b)	$0 < e \le 1 \Longrightarrow \tan^2 \theta \ge \frac{1}{3}$	M1	2.1
	$\tan\theta \ge \frac{1}{\sqrt{3}}$	A1	1.1b
	$\theta \ge 30^{\circ}$ i.e. angle between walls must be at least 30° *	A1*	2.2a
		(3)	
		(13 n	narks)
Notes:			
A1: Correc M1: Correc A1: Correc M1: Correc M1: Correc A1: Condor A1: All correc M1: For pro A1*: Correc (b) M1: Use	t strategy to set up two equations to obtain connection between angles t use of NIL with <i>e</i> on correct side ne 1 error rect oducing equation in $\tan \theta$ and <i>e</i> only ct justification of given answer e of $0 < e \le 1$ to give inequality	usion	
A1: Correct	inequality		
A1*: Correct	ct justification of given answer		