

Mark Scheme

Mock Set 4

Pearson Edexcel GCE In Mathematics (9MA0) Paper 1 Pure Mathematics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Spring 2023 Publications Code 9MA0_01_MS4_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response they</u> <u>wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c)=(x+p)(x+q)$, where |pq|=|c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question	Scheme	Marks	AOs
1(a)	$m = \frac{5 - (-2)}{7 - (-3)}$ or $m = \frac{-2 - 5}{-3 - 7}$	M1	1.1b
	$m = \frac{7}{10}$	A1	1.1b
		(2)	
(b)	$y - 5 = \frac{7}{10}(x - 7)$ 7x - 10y + 1 = 0	M1	1.1b
	7x - 10y + 1 = 0	A1	1.1b
		(2)	
(c)	$m_{_{N}} = -\frac{10}{7}$	B1ft	1.1b
		(1)	
		(5	marks)
	Notes		
	ct method for the gradient		
A1: Correc	et value (oe e.g. 0.7 but not $\frac{-7}{-10}$)		
Corre	ct answer implies both marks		
(b)			
	ct straight line method using A or B and their m. For the $y = mx + c$	approach, m	ust
	ast a value for c to score this mark.		
	et equation in the required form (allow any integer multiple)		
(c)	10		
B1ft: For	$m_N = -\frac{10}{7}$ or the negative reciprocal of their answer to part (a)		

Question	Scheme	Marks	AOs	
2(a)	$u_2 = 4p + q$	B1	1.1b	
		(1)		
(b)	4p + q = 10	B1ft	1.1b	
	$\sum_{r=1}^{3} u_r = 42 \Longrightarrow 4 + 10 + 10 p + q = 42 \Longrightarrow p = \dots, q = \dots$	M1	1.1b	
	p = 3, q = -2	A1	1.1b	
		(3)		
		(4	marks)	
	Notes			
(b)	ct expression rect equation or correct follow through equation.			
	heir part (a) in terms of p and $q = 10$			
M1: Uses $\sum_{r=1}^{3} u_r = 42$ to establish another equation connecting p and q and solves simultaneously				
with their	equation from part (a) to find values for p and q			
A1: Corre	A1: Correct values			

Question	Scheme	Marks	AOs
3 (a)	<i>y</i> > 2	B1	2.5
		(1)	
(b)	$fg(x) = e^{3\ln x} + 2 = e^{\ln x^3} + 2$	M1	2.1
	$= x^{3} + 2$	A1	1.1b
		(2)	
(c)	$y = e^{3x} + 2 \Longrightarrow y - 2 = e^{3x} \Longrightarrow 3x = \ln(y - 2)$	M1	1.1b
	$f^{-1}(x) = \frac{1}{3}\ln(x-2)$	A1	1.1b
	<i>x</i> > 2	B1ft	2.2a
		(3)	
		(6	marks)
	Notes		
(a)			
B1: Corre	ct range. Allow $f(x)$ or f for y . Allow e.g. $\{y \in \mathbb{R}: y > 2\}, 2 < y < \infty$,	(2,∞)	
(b)			
M1: Atten	npts the composite function the correct way round and applies 3ln	$x = \ln x^3$	
	ct expression (ignore any domain given)		
M1: Atten	npts the inverse function and reaches $\alpha x = \ln(y \pm 2)$ or $\alpha y = \ln(x \pm 2)$	±2)	
A1: Corre	ct inverse (the function must be in terms of x but allow $f^{-1}(x) =$	or e.g. $v =$	but not

A1: Correct inverse (the function must be in terms of x but allow $f^{-1}(x) = ...$ or e.g. y = ... but not x = ...)

B1ft: Correct domain. Follow through their answer to part (a) but must be in terms of *x*.

Question	Scheme	Marks	AOs	
4	e.g. $\log_2(x+2) + \log_2(x+3) = \log_2(x+2)(x+3)$ $2\log_2 x = \log_2 x^2$	B1	1.2	
	$\log_{2}(x+2)(x+3) - \log_{2} x^{2} = \log_{2} 2$ $\Rightarrow \log_{2} \frac{(x+2)(x+3)}{x^{2}} = \log_{2} 2 \Rightarrow (x+2)(x+3) = 2x^{2}$	M1	2.1	
	$x^2 - 5x - 6 = 0 \Longrightarrow x = -1, 6$	dM1	1.1b	
	x = 6	A1	2.3	
		(4)		
		(4	marks)	
	Notes			
B1: Recall	B1: Recalls at least one rule of logs correctly (but not for just $1 = \log_2 2$)			

M1: Applies a correct strategy including the use of $1 = \log_2 2$ to remove the logs to obtain a

quadratic equation in xdM1: Solves the resulting 3TQ (may only see the positive root) A1: This is for x = 6 only and no other values offered or not clearly rejected

Question	Scheme	Marks	AOs		
5(a)	$(2+3x)^{6} = 2^{6} + {\binom{6}{1}} 2^{5} (3x) + {\binom{6}{2}} 2^{4} (3x)^{2} + {\binom{6}{3}} 2^{3} (3x)^{3} + \dots$	M1	1.1b		
	= 64 +	B1	1.1b		
	$= + 576x + 2160x^{2} + 4320x^{3} +$	A1	1.1b		
	$+570\lambda+2100\lambda+4520\lambda+$	Al	1.1b		
(a)		(4)			
(a) ALT	$(2+3x)^{6} = 2^{6} \left(1 + \frac{3x}{2}\right)^{6} = 2^{6} \left(1 + \binom{6}{1} \left(\frac{3x}{2}\right) + \binom{6}{2} \left(\frac{3x}{2}\right)^{2} + \binom{6}{3} \left(\frac{3x}{2}\right)^{3} + \dots\right)$	M1	1.1b		
	= 64 +	B1	1.1b		
	$= \dots + 576x + 2160x^2 + 4320x^3 + \dots$	A1	1.1b		
	$+570\lambda+2100\lambda+4520\lambda+$	Al	1.1b		
(b)	3×64 " or $\pm \frac{1}{8} \times 4320$ "	(4) M1	1.1b		
	Coefficient of x is:				
	$3 \times "64" - \frac{1}{8} \times "4320"$ = -348	M1	3.1a		
	= -348	A1	1.1b		
		(3)			
		(7	marks)		
()	Notes				
(a) M1: For the correct structure of one of terms 2, 3 or 4. This requires a correct binomial coefficient combined with a correct power of 2 and a correct power of $(3x)$ condoning missing brackets around the '3x' B1: For 64 A1: For 2 of $+576x + 2160x^2 + 4320x^3 +$ (Allow terms to be listed) A1: All 3 of $+576x + 2160x^2 + 4320x^3 +$ (Allow terms to be listed) (a) ALT M1: Takes out a factor of 2 ⁶ together with a correct structure for one of terms 2, 3 or 4 in the					
bracket. This requires a correct binomial coefficient combined a correct power of $\frac{3x}{2}$					
A1: For 2	B1: For 64 A1: For 2 of $+576x + 2160x^2 + 4320x^3 +$ (Allow terms to be listed) A1: All 3 of $+576x + 2160x^2 + 4320x^3 +$ (Allow terms to be listed)				
M1: For a	ttempting one correct "term". Condone sign error on 2 nd term. correct strategy for the required coefficient using their expansion from 348	ı part (a)			

Question	Scheme	Marks	AOs
6	Assume there exists a positive real value of <i>x</i> for which		
	$x + \frac{4}{3} < 4$	B1	2.5
	x		
	$x + \frac{4}{x} < 4 \Longrightarrow x^2 + 4 < 4x \Longrightarrow x^2 - 4x + 4 < 0$	M1	3.1a
	$\frac{x}{x^2 - 4x + 4 < 0} \Longrightarrow \left(x - 2\right)^2 < 0$	M1	2.1
	Which is a contradiction as $(x-2)^2 \ge 0$		
	So $x + \frac{4}{x} \ge 4$	A1	2.4
		(4)	
ALT	Assume there exists a positive real value of x for which		~ ~
	$x + \frac{4}{x} < 4$	B1	2.5
	$x + \frac{4}{x} < 4$ $x + \frac{4}{x} < 4 \implies x^{2} + 8 + \frac{16}{x^{2}} < 16 \implies x^{2} - 8 + \frac{16}{x^{2}} < 0$	M1	3.1a
	$\Rightarrow x^{2} - 8 + \frac{16}{x^{2}} < 0 \Rightarrow \left(x - \frac{4}{x}\right)^{2} < 0$	M1	2.1
	Which is a contradiction as $\left(x - \frac{4}{x}\right)^2 \ge 0$	A1	2.4
	So $x + \frac{4}{x} \ge 4$		2.1
	X	(4)	
		(4	marks
	Notes (this must be a proof by contradiction)		
	g correct language and notation to set up the contradiction ses the requirement to multiply though by <i>x</i> and collects terms to	one side	
-	propriate algebra to progress to the contradiction x and conects terms to	one side	
	rigorous argument using fully correct algebra with a conclusion		
ALT			

B1: For using correct language and notation to set up the contradiction

M1: Recognises the requirement to squares both sides and collects terms to one side M1: Uses appropriate algebra to progress to the contradiction

A1: Full and rigorous argument using fully correct algebra with a conclusion

Question	Scheme	Marks	AOs
7(a)	$\overrightarrow{AB} = \left(\begin{pmatrix} t \\ 2t \\ 5t \end{pmatrix} - \begin{pmatrix} 8 \\ -3 \\ 2 \end{pmatrix} \right)$	M1	1.1b
	$\overrightarrow{AB} = \begin{pmatrix} t-8\\2t+3\\5t-2 \end{pmatrix} \Rightarrow \left \overrightarrow{AB} \right ^2 = (t-8)^2 + (2t+3)^2 + (5t-2)^2 = \dots$	M1	1.1b
	$= t^{2} - 16t + 64 + 4t^{2} + 12t + 9 + 25t^{2} - 20t + 4$ $= 30t^{2} - 24t + 77 *$	A1*	2.1
		(3)	
(b)(i)	$\left \overrightarrow{AB}\right ^{2} = 30t^{2} - 24t + 77 \Rightarrow \frac{d\left \overrightarrow{AB}\right ^{2}}{dt} = 60t - 24 = 0 \Rightarrow t = \dots$ or $\left \overrightarrow{AB}\right ^{2} = 30t^{2} - 24t + 77 = 30\left(t^{2} - \frac{4}{5}t + \frac{77}{30}\right)$ $= 30\left(\left(t - \frac{2}{5}\right)^{2} + \frac{361}{150}\right) \Rightarrow t = \dots$	M1	3.1a
	$t = \frac{2}{5}$	A1	2.2a
(ii)	$\left \overline{AB}\right = \sqrt{\left(\frac{2}{5} - 8\right)^2 + \left(2\left(\frac{2}{5}\right) + 3\right)^2 + \left(5\left(\frac{2}{5}\right) - 2\right)^2}$	dM1	1.1b
	$\left \overrightarrow{AB}\right = \frac{19\sqrt{5}}{5}$	A1	1.1b
		(4)	
(c)	$\overrightarrow{OC} = \overrightarrow{OA} + \frac{5}{8} \overrightarrow{AB} = \begin{pmatrix} 8\\ -3\\ 2 \end{pmatrix} + \frac{5}{8} \begin{pmatrix} \frac{2}{5} - 8\\ \frac{4}{5} + 3\\ 0 \end{pmatrix}$ or $\overrightarrow{OC} = \overrightarrow{OB} + \frac{3}{8} \overrightarrow{BA} = \begin{pmatrix} \frac{2}{5}\\ \frac{4}{5}\\ 2 \end{pmatrix} + \frac{3}{8} \begin{pmatrix} 8 - \frac{2}{5}\\ -3 - \frac{4}{5}\\ 0 \end{pmatrix}$	M1	3.1a
	$\left(\frac{13}{4}, -\frac{5}{8}, 2\right)$	A1	1.1b
		(2)	
	~~	(9	marks)
(-)	Notes		
M1: Appli	racts the 2 vectors either way round ies Pythagoras to their vector and attempts to expand brackets ains the printed answer with no errors.		

(b)(i) M1: Correct strategy for finding the value for t e.g. calculus or completing the square

A1: Correct value
(ii)
dM1: Substitutes their value for *t* and attempts the minimum distance
A1: Cao
(c)
M1: Fully correct strategy to find the coordinates of *C*A1: Correct coordinates (condone if given as a vector)

Question	Scheme	Marks	AOs
8(a)	$\frac{\sin 2\theta + \sin \theta}{\cos 2\theta + \cos \theta + 1} \equiv \frac{2\sin \theta \cos \theta + \sin \theta}{\dots} \text{or} \frac{\dots}{2\cos^2 \theta - 1 + \cos \theta + 1}$	M1	1.1b
	$\frac{\sin 2\theta + \sin \theta}{\cos 2\theta + \cos \theta + 1} \equiv \frac{2\sin \theta \cos \theta + \sin \theta}{2\cos^2 \theta - 1 + \cos \theta + 1}$	M1	2.1
	$\equiv \frac{\sin\theta(2\cos\theta+1)}{\cos\theta(2\cos\theta+1)} = \tan\theta^*$	A1*	2.2a
		(3)	
(b)	$\frac{\sin 2x + \sin x}{\cos 2x + \cos x + 1} = 2\cos x \Longrightarrow \tan x = 2\cos x$ $\Rightarrow \sin x = 2\cos^2 x = 2\left(1 - \sin^2 x\right)$	M1	3.1a
-	$\Rightarrow 2\sin^2 x + \sin x - 2 = 0$	A1	1.1b
	$\sin x = \frac{-1 \pm \sqrt{17}}{4} (0.780, -1.280) \Rightarrow x =$	dM1	1.1b
	x = 0.896, 2.246	A1 A1	1.1b 1.1b
		(5)	
		(8	marks)
	Notes		
M1: Appli A1*: Facto (b) M1: Make	Let $\sin 2\theta = 2\sin\theta\cos\theta$ in the numerator or $\cos 2\theta = 2\cos^2\theta - 1$ in the definition $\cos 2\theta = 2\sin\theta\cos\theta$ in the numerator and $\cos 2\theta = 2\cos^2\theta - 1$ in the definition of $\cos^2\theta = 2\cos^2\theta$	denomina	tor
dM1: Solv	et 3 IQ res a 3TQ in sin x and obtains at least one value for x one correct value		
	correct, allowing awrt, and no other values in range		

Question	Scheme	Marks	AOs	
9(a)	$t = 0, \ \theta = 80 \Rightarrow A = 59$	B1	2.2a	
	$t = 40, \ \theta = 33 \Longrightarrow 33 = 21 + 59e^{-40k} \Longrightarrow e^{-40k} = \frac{12}{59}$ $\Longrightarrow -40k = \ln\left(\frac{12}{59}\right) \Longrightarrow k = \dots$	M1	3.1b	
	$\Rightarrow k = -\frac{1}{40} \ln\left(\frac{12}{59}\right) (= 0.0398)$	Al	1.1b	
	$\theta = 21 + 59 \mathrm{e}^{-0.0398t}$	A1	3.3	
		(4)		
(b)	$t = 20 \Rightarrow \theta = 21 + 59e^{-20 \times 0.0398} =(47.6)$	M1	3.4	
	This suggests that the model is appropriate because $47.6 \approx 48$	Alft	3.5a	
		(2)		
(b) Alt	$\theta = 48 \Rightarrow 48 = 21 + 59e^{-20 \times 0.0398} \Rightarrow e^{-0.0398t} = \frac{27}{69} \Rightarrow t =(19.6)$	M1	3.4	
	This suggests that the model is appropriate because $19.6 \approx 20$	Alft	3.5a	
		(2)		
(c)	$\theta = 21 + 59e^{-0.0398t} \Rightarrow \frac{d\theta}{dt} = -0.0398 \times 59e^{-0.0398t} = \dots$	B1ft	2.2a	
	$\Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.0398 \times 59\mathrm{e}^{-0.0398 \times 20} = \dots$	M1	1.1b	
	Decreasing at a rate of 1.06 °C per minute	A1	3.2a	
		(3)		
	Notes	(9	marks)	
M1: Uses	$t = 0, \theta = 80$ to deduce the correct value for A the given equation for the model and $t = 40, \theta = 33$ and correct log we	ork to esta	blish a	
	ct value for k (exact or awrt 0.0398) ct equation (allow exact k or awrt 0.0398)			
M1: Uses the model with their values to find the temperature after 20 minutes A1ft: Compares their value with 48 and makes a correct interpretation Alt:				
M1: Uses	the model with their values to find t when $\theta = 48$ pares their value with 20 and makes a correct interpretation			
B1ft: Ded	uces the correct derivative. Follow through their values. Follow through their values. The form βe^{-kt} to establish the require	ed rate.		
A1: Corre	ct rate including units			

Question	Scheme	Marks	AOs
10(a)	$k = 20 \Rightarrow \frac{8-2k}{4+k} = \frac{-32}{24}$ which is < -1 so the series does not converge	B1	2.4
		(1)	
(b)	$\frac{8-2k}{4+k} < 1 \Longrightarrow k > \dots \text{or} \frac{8-2k}{4+k} > -1 \Longrightarrow k < \dots$ $\frac{8-2k}{4+k} < 1 \Longrightarrow k > \dots \text{and} \frac{8-2k}{4+k} > -1 \Longrightarrow k < \dots$	M1	1.1b
	$\frac{8-2k}{4+k} < 1 \Longrightarrow k > \dots \text{and} \frac{8-2k}{4+k} > -1 \Longrightarrow k < \dots$	M1	2.1
	$k > \frac{4}{3} \text{ or } k < 12$ $\frac{4}{3} < k < 12$	A1	1.1b
	$\frac{4}{3} < k < 12$	A1	2.2a
		(4)	
		(5	marks)
()	Notes		
(a) B1: Correc (b)	ct explanation		
M1: Atten	npts to solve either $\frac{8-2k}{4+k} < 1$ or $\frac{8-2k}{4+k} > -1$ to obtain one bound		
M1: Atten	npts to solve both $\frac{8-2k}{4+k} < 1$ and $\frac{8-2k}{4+k} > -1$ to obtain both bounds		
A1: One c			
A1: Dedu	ces the correct range for k		

Question	Scheme	Marks	AOs
11(a)(i)	$74 = ab^{10}, 198 = ab^{14} \Rightarrow \frac{198}{74} = b^4 \Rightarrow b = \sqrt[4]{\frac{198}{74}}$	M1	3.1a
	b=1.279	A1	1.1b
(a)(ii)	$74 = ab^{10} \Rightarrow a = \frac{74}{b^{10}}$ or $198 = ab^{14} \Rightarrow a = \frac{198}{b^{14}}$	dM1	3.4
	<i>a</i> =6.3	A1	1.1b
		(4)	
(b)(i)	a is the energy output in 1996	B1	3.4
(b)(ii)	<i>b</i> is the factor by which the energy output increases each year	B1	3.4
		(2)	
(c)	$E = 6.3 \times 1.279^{29} = \dots$	M1	3.4
	= 7917.46 (GW)	A1	1.1b
		(2)	
		(8	marks)
	Notes		
A1: <i>b</i> = 1.2 (a)(ii)	2 equations in <i>a</i> and <i>b</i> and solves to obtain a value for <i>b</i> . 79 either equation and their value for <i>b</i> to find a value for <i>a</i>		
A1: $a = 6.3$ (b)(i)			
	t interpretation for the constant <i>a</i>		
(b)(ii)			
	t interpretation for the constant b		
(c)			
MI: Uses t	heir values of a and b with $t = 29$ in the equation for the model to obt	tain a value	د

M1: Uses their values of a and b with t = 29 in the equation for the model to obtain a value A1: Correct value. Allow values between awrt 7920 to awrt 7935 following correct work.

Question	Scheme	Marks	AOs		
12(a)	$\int x^2 e^{x^3} dx = \frac{1}{3} e^{x^3} (+c)$	M1	1.1b		
	J ¹ 1 1 1 3 1 (11)	A1 (2)	1.1b		
(b)	du $f = f = f = \frac{1}{2}$	(2)			
	$u = x^{3} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3x^{2} \Rightarrow \int x^{8} \mathrm{e}^{x^{3}} \mathrm{d}x = \int \frac{x^{8} \mathrm{e}^{u}}{3x^{2}} \mathrm{d}u = \frac{1}{3} \int u^{2} \mathrm{e}^{u} \mathrm{d}u$	M1	3.1a		
	$\frac{1}{3}\int u^2 e^u du = \frac{1}{3}u^2 e^u - \frac{2}{3}\int u e^u dx$	M1 A1	2.1 1.1b		
	$=\frac{1}{3}u^{2}e^{u}-\frac{2}{3}ue^{u}+\frac{2}{3}\int e^{u} du$	M1	1.1b		
	$= \frac{1}{3}u^{2}e^{u} - \frac{2}{3}ue^{u} + \frac{2}{3}e^{u} + c = \frac{1}{3}x^{6}e^{x^{3}} - \frac{2}{3}x^{3}e^{x^{3}} + \frac{2}{3}e^{x^{3}} + c$ $= \frac{1}{3}e^{x^{3}}(x^{6} - 2x^{3} + 2) + c$	A1	2.1		
	5	(5)			
	Alternative:	<u> </u>			
	$\int x^8 \mathrm{e}^{x^3} \mathrm{d}x = \int x^6 x^2 \mathrm{e}^{x^3} \mathrm{d}x$	M1	3.1a		
	$\int x^6 x^2 e^{x^3} dx = \frac{1}{3} x^6 e^{x^3} - 2 \int x^5 e^{x^3} dx$	M1 A1	2.1 1.1b		
	$\int x^{6} x^{2} e^{x^{3}} dx = \frac{1}{3} x^{6} e^{x^{3}} - 2 \int x^{3} x^{2} e^{x^{3}} dx$ $= \frac{1}{3} x^{6} e^{x^{3}} - 2 \left[\frac{1}{3} x^{3} e^{x^{3}} - \int x^{2} e^{x^{3}} dx \right]$	M1	1.1b		
	$=\frac{1}{3}x^{6}e^{x^{3}}-\frac{2}{3}x^{3}e^{x^{3}}+\frac{2}{3}e^{x^{3}}+c=\frac{1}{3}e^{x^{3}}\left(x^{6}-2x^{3}+2\right)+c$	A1	2.1		
		(7	marks)		
	Notes				
(a) M1: For	$x^2 e^{x^3} dx = k e^{x^3} (+c)$				
•	ct integration (condone omission of $+ c$)				
M1: Appli	(b) M1: Fully correct strategy for the substitution to reach an integral in terms of u only. M1: Applies integration by parts in the correct direction on u^2e^u				
	ct integral for the first application of parts ies parts again on $u e^{u}$				
A1: Completes the process and obtains the correct answer in the form required Alt:					
M1: Makes the key step of writing x^8 as $x^6 \times x^2$					
M1: Applies integration by parts in the correct direction A1: Correct integral for the first application of parts					
	M1: Applies integration by parts again, in the correct direction, after writing x^5 as $x^3 \times x^2$				
	pletes the process and obtains the correct answer in the form required				
A1: Comp	eletes the process and obtains the correct answer in the form required				

Question	Scheme	Marks	AOs		
13(a)	$\frac{1}{x(100-x)} \equiv \frac{P}{x} + \frac{Q}{100-x} \Longrightarrow P = \dots, Q = \dots$	M1	1.1b		
	$\frac{1}{x(100-x)} \equiv \frac{1}{100x} + \frac{1}{100(100-x)}$	A1	1.1b		
		(2)			
(b)	$500\frac{dx}{dt} = x(100 - x) \Rightarrow \int \frac{500}{x(100 - x)} dx = \int dt \text{ or } \int \frac{1}{x(100 - x)} dx = \int \frac{1}{500} dt$ $\Rightarrow 5\int \left(\frac{1}{x} + \frac{1}{100 - x}\right) dx = \int dt \text{ or e.g. } \int \left(\frac{1}{x} + \frac{1}{100 - x}\right) dx = \int \frac{1}{5} dt$	M1	2.1		
	$5\ln x - 5\ln(100 - x) = t + c$	M1 A1ft	3.1a 1.1b		
	$x = 5, t = 0 \Longrightarrow 5 \ln \frac{1}{19} = c$	M1	3.4		
	$5\ln x - 5\ln(100 - x) = t + 5\ln\frac{1}{19} \Longrightarrow 5\ln\frac{x}{100 - x} = t + 5\ln\frac{1}{19}$ $\Longrightarrow \ln\frac{x}{100 - x} = \frac{t}{5} + \ln\frac{1}{19} \Longrightarrow \frac{x}{100 - x} = \frac{1}{19}e^{\frac{t}{5}} \Longrightarrow x = \dots$	M1	2.1		
	$x = \frac{100}{1 + 19e^{\frac{1}{5}t}}$	A1	1.1b		
		(6)			
(c)	$x = \frac{100}{1 + 19e^{\frac{1}{5} \times 10}} = \dots$	M1	3.4		
	$x = 28 (m^2)$	A1	1.1b		
		(2)			
	(10 mar				
Notes					

(a)

M1: Correct method of partial fractions to find values for P and Q. May be implied by correct values or correct fractions.

A1: Correct partial fractions

(b)

M1: Separates the variables and uses the result from part (a)

M1: Correct attempt at the integration.

Look for $\alpha \ln x + \beta \ln(100 - x) = t$ or equivalent

A1ft: Correct integration for their PFs of the form $\frac{A}{x} + \frac{B}{100-x}$ (condone omission of + c)

M1: Uses the conditions in the model of x = 5, t = 0 to find their constant of integration

M1: Uses correct processing to make x the subject to reach an expression of the required form

A1: Correct expression

(c)

M1: Uses their equation with t = 10 to find a value for x

A1: x = 28.00045... awrt 28

Question	Scheme	Marks	AOs		
14(a)	$x = \frac{\pi\sqrt{3}}{12} \text{or} y = \frac{2}{3}$ $x = \frac{\pi\sqrt{3}}{12} \text{and} y = \frac{2}{3}$	B1	1.1b		
	$x = \frac{\pi\sqrt{3}}{12}$ and $y = \frac{2}{3}$	B1	1.1b		
(b)	d.v. 1 1	(2)			
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{1}{2}\sin\theta + \frac{1}{2}\theta\cos\theta$	M1	1.1b		
	Area under $C = \int y \frac{dx}{d\theta} d\theta = \int \frac{1}{3} \sec \theta \left(\frac{1}{2} \sin \theta + \frac{1}{2} \theta \cos \theta \right) d\theta$	M1 A1	2.1 1.1b		
	Area required is $\frac{\pi\sqrt{3}}{12} \times \frac{2}{3} - \frac{1}{6} \int (\tan \theta + \theta) d\theta$	ddM1	3.1a		
	$=\frac{1}{18}\pi\sqrt{3} - \frac{1}{6}\int_0^{\frac{\pi}{3}} (\tan\theta + \theta)\mathrm{d}\theta$	A1	2.1		
		(5)			
(c)	$\int (\tan \theta + \theta) d\theta = \ln(\sec \theta) + \frac{\theta^2}{2} (+c)$	B1	2.2a		
	Area $= \frac{1}{18}\pi\sqrt{3} - \frac{1}{6} \left[\ln(\sec\theta) + \frac{\theta^2}{2} \right]_0^{\frac{\pi}{3}}$ $= \frac{1}{18}\pi\sqrt{3} - \frac{1}{6} \left(\ln\left(\sec\frac{\pi}{3}\right) + \frac{\pi^2}{18} - (0) \right)$	M1	2.1		
	$=\frac{1}{18}\pi\sqrt{3} - \frac{1}{6}\ln 2 - \frac{\pi^2}{108}$	A1	1.1b		
		(3)			
	NT /	(10	marks)		
Notes(a)B1: One correct coordinateB1: Both correct coordinates(b)M1: Applies the product rule to the x parameter to obtain $\frac{dx}{d\theta} = \alpha \sin \theta + \beta \theta \cos \theta$ M1: Applies $\int y \frac{dx}{d\theta} d\theta$ for the area under the curveA1: Correct integralddM1: Fully correct strategy for the area of R.A1: Fully correct expression in the form required(c)B1: Deduces the correct expression for $\int (\tan \theta + \theta) d\theta$ M1: Completes the problem by applying the correct limitsA1: Correct expression					

Question	Scheme	Marks	AOs		
15(a)	$y = \arccos \frac{1}{2} x \Longrightarrow \cos y = \frac{1}{2} x \Longrightarrow x = 2\cos y$ $y = \arcsin x \Longrightarrow \sin y = x$	M1	1.1b		
	$\sin y = 2\cos y \Rightarrow \tan y = 2*$ or $\sin y = x, 2\cos y = x \Rightarrow \tan y = \frac{x}{\frac{x}{2}} = 2*$	A1*	2.1		
(b)	2		(2)		
	$\tan y = 2 \Rightarrow x = \sin y = \frac{2}{\sqrt{5}}$ or $\tan y = 2 \Rightarrow x = 2\cos y = \frac{2}{\sqrt{5}}$ or $\tan y = 2 \Rightarrow \tan^2 y = 4 \Rightarrow \sec^2 y = 5 \Rightarrow \cos y = \frac{1}{\sqrt{5}} \Rightarrow x = \frac{2}{\sqrt{5}}$ or $\tan y = 2 \Rightarrow \cot^2 y = \frac{1}{4} \Rightarrow \csc^2 y = \frac{5}{4} \Rightarrow \sin y = \frac{2}{\sqrt{5}} = x$	M1 A1	3.1a 2.2a		
	Notes	(4	marks)		
(a) M1: Uses inverse trigonometric functions to express x in terms of cos y and x in terms of sin y A1*: Sets the x's equal and rearranges to the given answer or uses sin y and cos y in terms of x and applies $\tan y = \frac{\sin y}{\cos y}$ to obtain the given answer. (b) M1: Uses Pythagoras directly or trigonometric identities to establish the value of x A1: Correct exact value (accept any exact equivalent e.g. $\frac{2\sqrt{5}}{5}$)					

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom