Exam-style practice: Paper 2

1
$$y = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$

Maximum at (-2,8)

$$\Rightarrow \frac{b}{2a} = 2 \implies b = 4a \quad (1)$$

and
$$c - \frac{b^2}{4a} = 8$$
 (2)

Passes through (-4,4)

$$\Rightarrow 16a - 4b + c = 4 \tag{3}$$

$$(3)-(2): 16a-4b+\frac{b^2}{4a}=-4$$

Substitute expression for b from (1) gives

$$16a - 16a + 4a = -4$$

$$\Rightarrow a = -1 \Rightarrow b = 4a = -4$$

From (3)
$$\Rightarrow c = 4 + 4b - 16a$$

$$=4+4(-4)-16(-1)=4$$

So
$$a = -1$$
, $b = -4$, $c = 4$

2 a l_1 passes through P(6, 4) and Q(0, 28)

Gradient =
$$m_1 = \frac{28-4}{0-6} = -4$$

So
$$(y-4) = (-4)(x-6)$$

$$\Rightarrow y = -4x + 28$$

b Let l_2 have gradient m_2

Since l_1 and l_2 are perpendicular,

$$m_1 m_2 = -1 \Rightarrow m_2 = \frac{1}{4}$$

So
$$(y-4) = \frac{1}{4}(x-6)$$

$$\Rightarrow y = \frac{1}{4}x + \frac{5}{2}$$

c R is positioned where l_2 crosses the x-axis

$$\frac{1}{4}x + \frac{5}{2} = 0 \Rightarrow x = -10$$

So
$$R(-10,0)$$

d ΔPQR is a right-angled triangle.

Area =
$$\frac{1}{2} \times (base) \times (height)$$

Using Pythagoras' theorem,

$$|PQ| = \sqrt{(6)^2 + (24)^2} = \sqrt{612} = 2\sqrt{153}$$

$$|RP| = \sqrt{(16)^2 + (4)^2} = \sqrt{272} = 2\sqrt{68}$$

$$Area = \frac{1}{2} \left(2\sqrt{153} \right) \left(2\sqrt{68} \right)$$

$$=2\sqrt{10404}=204$$

So the area of triangle *PQR* is 204 units²

 $3 \quad f(x) = e^{3x} - 1, \quad x \in \mathbb{R}$

$$v = e^{3x} - 1$$

$$\Rightarrow v+1=e^{3x}$$

$$\Rightarrow$$
 3x = ln(y+1)

$$\Rightarrow x = \frac{1}{3}\ln(y+1)$$

So
$$f^{-1}(x) = \frac{1}{3}\ln(x+1)$$
, $x > -1$

4 a The student did not apply the laws of logarithms correctly in moving from the first line to the second line:

$$\log_a x + \log_a y = \log_a xy$$

b $\log_4(x+3) + \log_4(x+4) = \frac{1}{2}$

$$\Rightarrow (x+3)(x+4) = 4^{\frac{1}{2}} = 2$$

$$\Rightarrow x^2 + 7x + 10 = (x+5)(x+2) = 0$$

So
$$x = -2$$

Note that x = -5 is not a solution since the function $\log_4 x$ is defined only on the

domain x > 0, so $\log_4(x+4)$ is undefined when x = -5.

5 a

b
$$-6 \le y \le 18$$

c Consider each section of the domain separately. There will be a solution in each section, because 18 > -3 > -6 and -6 < -3 < 2.

First find the equation of the line when $-14 \le x \le -6$ and solve for y = -3

$$(y-(-6)) = \frac{-6-18}{-6-(-14)}(x-(-6))$$

$$\Rightarrow$$
 $y + 6 = -3(x + 6)$

$$\Rightarrow v = -3x - 24$$

$$-3 = -3a - 24 \Rightarrow a = -7$$

Now find the equation of the line when $-6 \le x \le 10$ and solve for y = -3

$$(y-(-6)) = \frac{2-(-6)}{10-(-6)}(x-(-6))$$

$$\Rightarrow y + 6 = \frac{1}{2}(x + 6)$$

$$\Rightarrow y = \frac{1}{2}x - 3$$

$$-3 = \frac{1}{2}a - 3 \Longrightarrow a = 0$$

Solutions are a = -7, a = 0

6 a $f(x) = x^3 - kx^2 - 10x + k$ (x+2) is a factor of f(x) so f(-2) = 0 $\Rightarrow f(-2) = (-2)^3 - k(-2)^2 - 10(-2) + k$ = -8 - 4k + 20 + k = 0 $\Rightarrow 3k = 12 \Rightarrow k = 4$

b
$$x^3 - 4x^2 - 10x + 4 = 0$$

First take out the known factor (x + 2)

$$\Rightarrow$$
 $(x+2)(x^2-6x+2)=0$

So
$$x = -2$$
 or $x^2 - 6x + 2 = 0$

$$x^2 - 6x + 2 = 0$$

$$\Rightarrow (x-3)^2-9+2=0$$

$$\Rightarrow (x-3)^2 = y \Rightarrow$$

$$x = 3 \pm \sqrt{7}$$

Solutions are
$$x = -2$$
, $x = 3 + \sqrt{7}$

and
$$x = 3 - \sqrt{7}$$

7 **a** Area = $\frac{1}{2}(x-3)(x-10)\sin 30^\circ = 11$

$$\Rightarrow \frac{1}{2}(x-3)(x-10) \times \frac{1}{2} = 11$$

$$\Rightarrow$$
 $(x-3)(x-10) = 44$

$$\Rightarrow x^2 - 13x + 30 = 44$$

$$\Rightarrow x^2 - 13x - 14 = 0$$

b $x^2 - 13x - 14 = (x - 14)(x + 1) = 0$

So x = 14, x = -1, but x > 3 as the lengths of the sides of this triangle must be positive. So solution is x = 14.

8 a $x = 6 \sin t + 5 \Rightarrow \sin t = \frac{x - 5}{6}$

$$y = 6\cos t - 2 \Rightarrow \cos t = \frac{y+2}{6}$$

Since $\sin^2 t + \cos^2 t = 1$,

$$\left(\frac{x-5}{6}\right)^2 + \left(\frac{y+2}{6}\right)^2 = 1$$

$$\Rightarrow (x-5)^2 + (y+2)^2 = 36$$

So
$$h = -5$$
, $k = 2$, $c = 36$

8 **b** $c = 36 = (\text{radius})^2 \Rightarrow \text{radius} = 6$ t parameterises the circle and takes values

$$-\frac{\pi}{3} \le t < \frac{3\pi}{4}$$

So the angle that subtends the arc is

$$\frac{3\pi}{4} - \left(-\frac{\pi}{3}\right) = \frac{13\pi}{12} = \theta$$

So C is an arc of radius 6, and its length

is $\frac{\theta}{2\pi}$ × (circumference of circle radius 6)

Length of
$$C = \frac{1}{2\pi} \times \frac{13\pi}{12} \times 2\pi \times 6 = \frac{13\pi}{2}$$

9 **a**
$$\frac{4x^2 + 7x}{(x-2)(x+4)} = A + \frac{B}{x-2} + \frac{C}{x+4}$$

$$= A(x-2)(x+4) + B(x+4) + C(x-2)$$

Set
$$x = 2$$
: $30 = 6B \Rightarrow B = 5$

Set
$$x = -4$$
: $36 = -6C \implies C = -6$

Compare coefficients of $x^2 \Rightarrow A = 4$

So
$$A = 4$$
, $B = 5$, $C = -6$

b
$$\frac{4x^2 + 7x}{(x-2)(x+4)} = 4 + 5(x-2)^{-1} - 6(x+4)^{-1}$$

So to find the expansion as far as the term in x^2 , only need to find the expansions of $(x-2)^{-1}$ and $(x+4)^{-1}$ as far as the term in x^2

$$(x-2)^{-1} = -\frac{1}{2} \left(1 - \frac{x}{2} \right)^{-1}$$

$$= -\frac{1}{2} \left(1 + (-1) \left(-\frac{x}{2} \right) + \frac{(-1)(-2)}{2!} \left(-\frac{x}{2} \right)^2 + \dots \right)$$

$$= -\frac{1}{2} - \frac{1}{4}x - \frac{1}{8}x^2 + \dots$$

$$(x+4)^{-1} = \frac{1}{4} \left(1 + \frac{x}{4} \right)^{-1}$$

$$= \frac{1}{4} \left(1 + (-1) \left(\frac{x}{4} \right) + \frac{(-1)(-2)}{2!} \left(\frac{x}{4} \right)^2 + \dots \right)$$

$$= \frac{1}{4} - \frac{1}{16} x + \frac{1}{64} x^2 + \dots$$

So
$$\frac{4x^2 + 7x}{(x-2)(x+4)}$$

$$= 4 + 5\left(-\frac{1}{2} - \frac{1}{4}x - \frac{1}{8}x^2 + \dots\right)$$

$$-6\left(=\frac{1}{4} - \frac{1}{16}x + \frac{1}{64}x^2 + \dots\right)$$

$$= \left(4 - \frac{5}{2} - \frac{3}{2}\right) + \left(-\frac{5}{4} + \frac{3}{8}\right)x$$

$$+ \left(-\frac{5}{8} - \frac{3}{32}\right)x^2 + \dots$$

$$= -\frac{7}{8}x - \frac{23}{32}x^2 \dots$$

10
$$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BN} = \frac{1}{2}\overrightarrow{OB} + \frac{1}{2}\overrightarrow{BA}$$

So $\overrightarrow{MN} = \frac{1}{2}\mathbf{b} + \frac{1}{2}(-\mathbf{b} + \mathbf{a}) = \frac{1}{2}\mathbf{a}$
Therefore \overrightarrow{OA} and \overrightarrow{MN} are parallel and $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{OA}$ as required

11 a At
$$x = \frac{\pi}{2}$$
,

$$y = \left(\frac{\pi}{2}\right)^{2} \left(\sin\frac{\pi}{2} + \cos\frac{\pi}{2}\right)$$
= 2.46740 (5 d.p.)

b
$$\int_{a}^{b} y dx \approx \frac{h}{2} (y_0 + 2(y_1 + y_2 + \dots + y_{n-1}) + y_n)$$
So
$$\int_{0}^{\frac{3\pi}{4}} y dx$$

$$\approx \frac{h}{2} (y_0 + 2(y_1 + y_2 + \dots + y_5) + y_6)$$

$$= \frac{1}{2} (\frac{\frac{3\pi}{4} - 0}{6}) 2(0.20149 + 0.87239 + 1.81340 + 2.46740 + 2.08648)$$

$$= 2.922 \quad (3d.p.)$$

c Use integration by parts twice. First let
$$u = x^{2}, \frac{dv}{dx} = \sin x + \cos x$$

$$\Rightarrow v = \sin x - \cos x$$

$$\int_{0}^{\frac{3\pi}{4}} x^{2} (\sin x + \cos x)$$

$$= \left[x^{2} (\sin x - \cos x) \right]_{0}^{\frac{3\pi}{4}}$$

$$-2 \int_{0}^{\frac{3\pi}{4}} x (\sin x - \cos x) dx$$

Use integration by parts again, letting u = x, $\frac{dv}{dx} = \sin x - \cos x$

$$\Rightarrow v = \sin x + \cos x$$

This gives

$$\int_{0}^{\frac{3\pi}{4}} x^{2} (\sin x + \cos x)$$

$$= \left(\frac{3\pi}{4}\right)^{2} \left(\sqrt{2}\right)$$

$$-2\left\{-\left[x(\sin x + \cos x)\right]_{0}^{\frac{3\pi}{4}}$$

$$+\int_{0}^{\frac{3\pi}{4}} (\sin x + \cos x) dx\right\}$$

$$= \left(\frac{9\pi^{2}\sqrt{2}}{16}\right) - 2\left\{0 + \left[\sin x - \cos x\right]_{0}^{\frac{3\pi}{4}}\right\}$$

$$= \left(\frac{9\pi^{2}\sqrt{2}}{16}\right) - 2\left(\sqrt{2} + 1\right)$$

$$= 3.023 \quad (3d.p.)$$

d
$$\frac{3.023 - 2.922}{3.023} \times 100 = 3.3\%$$
 (1d.p.)

12 a
$$u_n = a + (n-1)d$$

 $a = 1000, d = 150$
So $u_{18} = 1000 + (18-1)(150) = 3550$
In the 18th year Ruth saves £3550

will have saved is £40 950

b
$$S_n = \frac{n}{2} (2a + (n-1)d)$$

 $S_{18} = \frac{18}{2} (2(1000) + (18-1)(150)) = 40950$
So in 18 years, the total amount that Ruth

12 c The sequence is now geometric with a = 1000, r = 1.1

$$S_{18} = \frac{1000(1 - (1.1)^{18})}{1 - 1.1} = 45599.17313$$

So after 18 years, Ruth will have saved £45 599.17 (2 d.p.) under this new scheme

- 13 a $R\cos(x-\alpha) = R\cos x \cos \alpha + R\sin x \sin \alpha$ $R\cos(x-\alpha) = 0.09\cos x + 0.4\sin x$ $R\cos\alpha = 0.09, R\sin\alpha = 0.4$ $\Rightarrow R^2 = (0.09)^2 + (0.4)^2$ (as $\sin^2 \alpha + \cos^2 \alpha = 1$) So $R = \sqrt{(0.09)^2 + (0.4)^2} = 0.41 \ (R > 0)$ $\frac{R\sin\alpha}{R\cos\alpha} = \tan\alpha = \frac{0.4}{0.09} = \frac{40}{9}$ $\Rightarrow \alpha = \tan^{-1}\left(\frac{40}{9}\right) = 1.3495 \text{ rad (4 d.p.)}$
 - **b** Use part **a** to write equation as

So R = 0.41, $\alpha = 1.3495$

$$h = \frac{16.4}{0.41\cos\left(\frac{t}{2} - \alpha\right)}$$

$$\Rightarrow h = \frac{40}{\cos\left(\frac{t}{2} - \alpha\right)}$$

So the minimum value of h occurs when

$$\frac{t}{2} - \alpha = 0 \Rightarrow t = 2\alpha$$

$$\Rightarrow t = 2 \times 1.3495 = 2.70 \text{ seconds (2 d.p.)}$$

$$h = \frac{40}{\cos \theta} = 40 \text{ cm}$$

$$c \quad h = \frac{40}{\cos\left(\frac{t}{2} - \alpha\right)} = 100$$
$$\Rightarrow \cos\left(\frac{t}{2} - \alpha\right) = \frac{2}{5}$$

This has two solutions in the interval

$$-1.3495 \leqslant \frac{t}{2} - 1.3496 \leqslant 1.3505$$

 $\frac{t}{2} - \alpha = 1.1593, -1.1593$
 $t = 2 \times (1.1593 + 1.3495) = 5.02$ seconds
 $t = 2 \times (-1.1593 + 1.3495) = 0.38$ seconds

14 a
$$h(t) = -10e^{-0.3(t-6.4)} - 10e^{0.8(t-6.4)} + 70$$

$$h'(t) = -10(-0.3)e^{-0.3(t-6.4)} - 10(0.8)e^{0.8(t-6.4)}$$
$$\Rightarrow h'(t) = 3e^{-0.3(t-6.4)} - 8e^{0.8(t-6.4)}$$

b From part **a**, when h'(t) = 0 $\frac{3}{8}e^{-0.3(t-6.4)} = e^{0.8(t-6.4)}$ $\Rightarrow \ln\left(\frac{3}{8}e^{-0.3(t-6.4)}\right) = 0.8(t-6.4)$ $\Rightarrow \frac{5}{4}\ln\left(\frac{3}{8}e^{-0.3(t-6.4)}\right) = t-6.4$ $\Rightarrow t = \frac{5}{4}\ln\left(\frac{3}{8}e^{-0.3(t-6.4)}\right) + 6.4$

$$c t_{n+1} = \frac{5}{4} \ln \left(\frac{3e^{-0.3(t_n - 6.4)}}{8} \right) + 6.4$$

$$t_1 = \frac{5}{4} \ln \left(\frac{3e^{-0.3(5 - 6.4)}}{8} \right) + 6.4 = 5.6990$$

$$t_2 = \frac{5}{4} \ln \left(\frac{3e^{-0.3(t_1 - 6.4)}}{8} \right) + 6.4 = 5.4369$$

$$t_3 = \frac{5}{4} \ln \left(\frac{3e^{-0.3(t_2 - 6.4)}}{8} \right) + 6.4 = 5.5351$$

$$t_4 = \frac{5}{4} \ln \left(\frac{3e^{-0.3(t_3 - 6.4)}}{8} \right) + 6.4 = 5.4983$$

All answers are to 4 decimal places.

14 d h'(5.5075) = 0.000360 (6 d.p.) h'(5.5085) = -0.000702 (6 d.p.) The sign change implies slope change, which implies a turning point at t = 5.508 (3 d.p.)