

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

GCSE CHEMISTRY

Higher Tier Paper 2

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

IB/M/Jun21/E14

Turn over ►

0 1.2	Oil contains carbon and some sulfur.
	When oil is burned, the products of combustion may be released into the atmosphere.
	Explain the environmental effects of releasing these products of combustion into the atmosphere.
	[6 marks]

0 1.3	Suggest one reason why using solar energy is a more sustainable way of genericity than burning oil.	generating [1 mark]	Do not write outside the box
01.4	Solar energy may not be able to replace the generation of electricity from fossil fuels completely. Suggest two reasons why.	[2 marks]	
	2 Turn over for the next question		12

Do not write outside the box

02.2	Predict the boiling point ${f X}$ of the alkane with seven carbon atoms in a molecule.	Do not write outside the box
	Use Table 1 and Figure 2.	
	[1 mark] X =°C	
	Χ0	
02.3	Figure 2 is not suitable to show the boiling point of the alkane with three carbon atoms in a molecule.	
	Suggest one reason why.	
	[1 mark]	
02.4	What is the state at 20 °C of the alkane with four carbon atoms in a molecule?	
	Use Table 1. [1 mark]	
	Question 2 continues on the next page	

Do not write
outside the
box

Table 1 is repeated below.

Table	1
-------	---

		Number of carbon atoms in alkane molecule	Boiling point of alkane in °C	
		4	0	
		5	36	
		6	69	
		7	x	
		8	126	
		9	151	
02.5		lkane with nine carbon atoms in lete the formula of nonane. C ₉ H		[1 mark]
02.6	than t	ne will condense lower in a frac he other alkanes in Table 1 . in why.	tionating column during fractic	nal distillation
		hould refer to the temperature	gradient in the fractionating co	lumn. [2 marks]

8

		Do not write outside the box
0 3	This question is about paper chromatography.	207
	A food colouring contains a dye.	
0 3.1	Plan an investigation to determine the R_f value for the dye in this food colouring.	
	$R_{f} = \frac{\text{distance moved by substance}}{\text{distance moved by solvent}}$	
	Your plan should include the use of:	
	• a beaker	
	a solvent	
	chromatography paper.	
	[6 marks]	

0 3.2	Two students investigated a dye in a food colouring using paper chromatography.	Do not write outside the box
	Each student did the investigation differently.	
	The R _f values they determined for the same dye were different.	
	How did the students' investigations differ?	
	[1 mark] Tick (✓) one box.	
	Different length of paper used	
	Different period of time used	
	Different size of beaker used	
	Different solvent used	
03.3	Paper chromatography involves a stationary phase.	
	What is the stationary phase in paper chromatography? [1 mark]	
	Tick (✓) one box.	
	Beaker	
	Dye	
	Paper	
	Solvent	8

0 4	This question is about poly(ethene) and polyesters.	Do not outsid bo
04.1	Poly(ethene) is produced from ethene.	
	Figure 3 shows part of the displayed structural formula equation for the reaction. Complete Figure 3. [2 marks]	
	Figure 3	
	$n \begin{array}{c} H \\ \\ C = C \\ \\ H \\ H \end{array} \longrightarrow \begin{array}{c} (H \\ C \\ C \\ H \\ H \end{array} + \begin{array}{c} H \\ C \\ H \end{array} + \begin{array}{c} (H \\ C \\ H \\ H \end{array} + \begin{array}{c} (H \\ C \\ H \\ H \end{array} + \begin{array}{c} (H \\ H \\ H \end{array} + \begin{array}{c} (H \\ C \\ H \\ H \end{array} + \begin{array}{c} (H \\ H \\ H \\ H \end{array} + \begin{array}{c} (H \\ H \\ H \\ H \end{array} + \begin{array}{c} (H \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} (H \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} (H \\ H \\ H \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} (H \\ H $	
04.2	Poly(ethene) is a thermosoftening polymer. Suggest why poly(ethene) is easier to recycle than thermosetting polymers. [2 marks]	
04.3	Ethene produces different forms of poly(ethene). How can different forms of poly(ethene) be produced from ethene? [1 mark]	

0 5	This question is about fertilisers.	Do not write outside the box
	Some fertilisers are described as NPK fertilisers because they contain three elements needed for healthy plant growth.	
0 5.1	Which two compounds each contain two of these elements? [2 marks] Tick (✓) two boxes.	
	Ammonium nitrate	
	Ammonium phosphate	
	Calcium chloride	
	Calcium phosphate	
	Potassium chloride	
	Potassium nitrate	
0 5.2	Rocks containing calcium phosphate are treated with acid to produce soluble salts that can be used as fertilisers.	
	Name the soluble salts produced when calcium phosphate reacts with:	
	nitric acid	
	phosphoric acid.	
	[2 marks]	
	Nitric acid	
	Phosphoric acid	

0 5.3	Ammonium sulfate is a compound in fertilisers.
	Ammonium sulfate can be made using an industrial process or in the laboratory.
	In the industrial process, the following steps are used.
	1. React streams of ammonia solution and sulfuric acid together.
	2. Evaporate the water by passing the solution down a warm column.
	3. Collect dry crystals continuously at the bottom of the column.
	In the laboratory, the following steps are used.
	1. React ammonia solution and sulfuric acid in a conical flask.
	2. Evaporate water from the solution until crystals start to form.
	3. Leave to cool and crystallise further.
	4. Separate the crystals using filtration.
	5. Dry the crystals between pieces of filter paper.
	Evaluate the two methods for producing a large mass of ammonium sulfate. [4 marks]

8

Turn over ►

0 6	This question is about cycloalkenes		Do no outsi b
	Cycloalkenes are ring-shaped hydro		a a
	double carbon-carbon bond.		y a
	Cycloalkenes react in a similar way	to alkenes.	
0 6 . 1	Describe a test for the double carbo	n-carbon bond in cycloalker	e molecules.
	Give the result of the test.		[2 marks]
	Test		
	Result		
06.2	Table 3 shows the name and formu	la of three cycloalkenes.	
	Tak	ble 3	
	Name	Formula	
	Cyclobutene	C ₄ H ₆	
	Cyclopentene	C₅H ₈	
	Cyclohexene	C ₆ H ₁₀	
	Determine the general formula for c	vcloalkenes	
	Determine the general formula for e	yoloalitenes.	[1 mark]
	-		
	Gei	neral formula =	

The formula of potash alum is KAl(SO ₄) ₂ 0 7.1 Give a test to identify the Group 1 metal ion in potash alum. You should include the result of the test. [2 marks] Test
You should include the result of the test. [2 marks] Test Result
Result
0 7 . 2 Name one instrumental method that could identify the Group 1 metal ion and show the concentration of the ion in a solution of potash alum. [1 mark]

		Do not with
	A student identifies the other metal ion in potash alum.	Do not write outside the box
	The student tests a solution of potash alum by adding sodium hydroxide solution until a change is seen.	
0 7.3	Give the result of this test. [1 mark]
		_
		-
0 7.4	This test gives the same result for several metal ions.	
	What additional step is needed so that the other metal ion in potash alum can be identified?	
	Give the result of this additional step. [2 marks]]
	Additional step	_
	Result	-
		-
0 7.5	Describe a test to identify the presence of sulfate ions in a solution of potash alum.	
	Give the result of the test. [3 marks]]
	Test	-
		_
	Result	-
		9

Some solders contain copper.

0 8

Table 4 shows information about three solders, A, B and C.

Table 4

Solder	Melting point in °C	Metals in solder
Α	183	tin, copper, lead
В	228	tin, copper, silver
С	217	tin, copper, silver

0 8 . 1 Solder B and solder C are now used more frequently than solder A for health reasons.

Suggest one reason why.

Use Table 4.

[1 mark]

Do not write outside the

box

0 8 . 2 Suggest one reason why solders **B** and **C** have different melting points.

Use Table 4.	[1 n

		Do not write
	Copper can be obtained by:	outside the box
	processing copper ores	
	 recycling scrap copper. 	
0 8.3	Suggest three reasons why recycling scrap copper is a more sustainable way of obtaining copper than processing copper ores. [3 marks]	
	1	
	2	
	3	
	Question 8 continues on the next page	

Turn over ►

	Copper is extracted from low-grade ores by phytomining.	Do not write outside the box
0 8.4	Describe how copper is extracted from low-grade ores by phytomining. [4 marks]	
0 8 . 5	Phytomining has not been widely used to extract copper.	
	Suggest two reasons why. [2 marks]	
	1	
	2	11

09.4	Determine the rate of the reaction for 0.05 mol/dm ³ sulfuric acid at 80 seconds. Show your working on Figure 9 . Give your answer to 2 significant figures. [5 marks]	Do not write outside the box
	Rate of reaction (2 significant figures) = cm ³ /s	
09.5	The activation energy for the reaction between zinc and sulfuric acid is lowered if a solution containing metal ions is added. What is the most likely formula of the metal ions added? [1 mark] Tick (✓) one box.	
	Al ³⁺	
	Cu ²⁺	<u></u>
	Turn over ►	

1 0	This question is about alkenes and alcohols.	Do not write outside the box
	Ethene is an alkene produced from large hydrocarbon molecules.	
	Large hydrocarbon molecules are obtained from crude oil by fractional distillation.	
10.1	Name the process used to produce ethene from large hydrocarbon molecules. [1 mark]	
10.2	Describe the conditions used to produce ethene from large hydrocarbon molecules. [2 marks]	

10.3	Ethanol can be produced from ethene and steam.
	The equation for the reaction is:
	$C_2H_4(g)$ + $H_2O(g)$ \rightleftharpoons $C_2H_5OH(g)$
	The forward reaction is exothermic.
	Explain how the conditions for this reaction should be chosen to produce ethanol as economically as possible. [6 marks]
	Turn over ▶

►

Do not write outside the box

		Do not write outside the
1 0 . 4	Ethanol can also be produced from sugar solution by adding yeast.	box
	Name this process.	
	[1 mark]	
1 0 . 5	Butanol can be produced from sugar solution by adding bacteria.	
	Sugar solution is broken down in similar ways by bacteria and by yeast.	
	Suggest the reaction conditions needed to produce butanol from sugar solution by adding bacteria.	
	[2 marks]	

		Do not write outside the
	Ethanol and butanol can be used as fuels for cars.	box
10.6	A car needs an average of 1.95 kJ of energy to travel 1 m	
	Ethanol has an energy content of 1300 kilojoules per mole (kJ/mol).	
	Calculate the number of moles of ethanol needed by the car to travel 200 km [3 marks]]
		-
		-
	Number of moles = mo	1
1 0 . 7	When butanol is burned in a car engine, complete combustion takes place.	
	Write a balanced equation for the complete combustion of butanol.	
	You do not need to include state symbols. [2 marks]	17
		-
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

IB/M/Jun21/8462/2H