AQA Level 2 Further Mathematics Matrices

Section 1: Matrix arithmetic

Exercise

1. Work out:

$$\begin{array}{ccc} \text{(i)} & \begin{pmatrix} 1 & 2 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{array}$$

(ii)
$$\begin{pmatrix} 4 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 0 & -2 \end{pmatrix}$$

(iii)
$$\begin{pmatrix} 4 & 1 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

(iii)
$$\begin{pmatrix} 4 & 1 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 (iv) $\begin{pmatrix} -2 & 5 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$ (v) $\begin{pmatrix} 6 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ (vi) $\begin{pmatrix} 3 & 0 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -4 & 0 \end{pmatrix}$ (vii) $\begin{pmatrix} 8 & -6 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ -4 \end{pmatrix}$ (viii) $\begin{pmatrix} 0 & 5 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 4 \\ 1 & -3 \end{pmatrix}$

$$(v) \quad \begin{pmatrix} 6 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$(vi) \quad \begin{pmatrix} 3 & 0 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -4 & 0 \end{pmatrix}$$

$$(vii) \begin{pmatrix} 8 & -6 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ -4 \end{pmatrix}$$

$$(viii) \begin{pmatrix} 0 & 5 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 4 \\ 1 & -3 \end{pmatrix}$$

2. If
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -2 & 1 \\ 3 & 0 \end{pmatrix}$, find

- (i) 5**A**
- (ii) -2**B**
- (iii) AB
- (iv) BA

3. If
$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ x & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 6 & 2 \\ 4 & y \end{pmatrix}$ find the values of x and y given that $\mathbf{AB} = \mathbf{BA}$.

4. If
$$\mathbf{P} = \begin{pmatrix} 3 & a \\ b & 2 \end{pmatrix}$$
 and $\mathbf{Q} = \begin{pmatrix} 2 & c \\ -1 & d \end{pmatrix}$ find the values of a, b, c and d given that $\mathbf{PQ} = \mathbf{I}$.

5.
$$\mathbf{A} = \begin{pmatrix} 1 + \sqrt{3} & 0 \\ 1 & \sqrt{3} \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 - \sqrt{3} & 1 \\ 1 & \sqrt{3} \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 1 - \sqrt{3} & 1 \\ 1 & \sqrt{3} \end{pmatrix}$$

- (i) Work out **AB**.
- (ii) Find a matrix C such that AC consists of four non-zero whole numbers.

$$6. \quad \mathbf{M} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(i) Work out \mathbf{M}^2 .

$$\mathbf{M}^3 = \mathbf{M}^2 \mathbf{M} ,$$

$$\mathbf{M}^4 = \mathbf{M}^3 \mathbf{M}$$
 etc

- (ii) Work out \mathbf{M}^3 .
- (iii) Write down, with reasoning, \mathbf{M}^{10} .