AQA Level 2 Further Mathematics Matrices

Section 2: Matrix transformations

Solutions to Exercise

1. (i) Image of
$$0 = (0, 0)$$

Image of
$$A = (-0.5, 0)$$

Image of
$$B = (-0.5, -0.5)$$

Image of
$$C = (0, -0.5)$$

The transformation is an enlargement, scale factor -0.5, centre the origin.

(ii) Image of
$$O = (0, 0)$$

Image of
$$A = (0, -1)$$

Image of
$$B = (-1, -1)$$

Image of
$$C = (-1, 0)$$

The transformation is a reflection in the line y = -x.

2. A:
$$\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$

B:
$$\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$
 so the image of B is $(3, -3)$

so the image of B is
$$(3, -3)$$

C:
$$\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -9 \end{pmatrix}$$
 so the image of C is $(6, -9)$

so the image of
$$C$$
 is $(6, -9)$

D:
$$\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -11 \end{pmatrix}$$

3. P:
$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

so the image of
$$P$$
 is $(0,0)$

Q:
$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -5 \end{pmatrix}$$
 so the image of Q is $(7, -5)$

so the image of
$$Q$$
 is $(7, -5)$

R:
$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$
 so the image of R is $(6, -4)$

so the image of R is
$$(6, -4)$$

S:
$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

AQA FM Matrices 2 Exercise solutions

4. Under P, the point (1, 0) is mapped to the point (-1, 0) and the point (0, 1) is unchanged.

So P is represented by $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

under Q, the point (1, 0) is mapped to the point (0, -1) and the point (0, 1) is mapped to the point (1, 0).

So Q is represented by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

The single matrix is $QP = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

This transformation is a reflection in the line y = x.

5. Enlargements with either scale factor $\sqrt{2}$ or $\sqrt{2}$ would work.

The relevant matrices are $\begin{pmatrix} \sqrt{2} & o \\ o & \sqrt{2} \end{pmatrix}$ and $\begin{pmatrix} -\sqrt{2} & o \\ o & -\sqrt{2} \end{pmatrix}$.

6.
$$\begin{pmatrix} 5 & 2 \\ 4 & a \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} k \\ -2k \end{pmatrix}$$

$$5-4=k$$

$$4-2a=-2k$$

$$k = 1, a = 3$$