

Section 3: Exponentials functions

Exercise solutions

(í)

X	0	1	2
y=a×	1	2	4

(ii) since $y = a^1 = 2, a = 2$

(iii) at x=4,
$$y = 2^{4} = 16$$

at x=-2, $y = 2^{-2} = \frac{1}{2^{2}} = \frac{1}{4}$

2.

(í) Both curves must go through (0,1), which is labelled.

Neither graph touches or crosses the x-axis.

 $y = 4^{\times}$ is steeper than $y = 3^{\times}$ and both curves are labelled

 $y = 2^{\times}$ crosses the y-axis at 1.

The graphs should not meet. Both curves are labelled

 $y = 2^{\times} - 1$ passes through the origin.

(ííí)

(íí)

The graphs should look symmetric across the x axis.

Both pass through (0,1), which is labelled.

AQA Level 2 Further Mathematics Algebra III

Neither graph touches or crosses the x-axis. Both curves are labelled.

з.

(í)

×	-3	-2	-1	0	1	2	З
$y = 3 - \left(\frac{1}{2}\right)^{x}$	-5	-1	1	2	2.5	2. 7 5	2.8 7 5

(íí)

Points plotted Graph labelled Smooth curve drawn

(ííí)

Some indication of having read from the graph.

Solutíon ín range −1.8 ≤ x ≤ −1.3

(More accuracy than 1dp suggests solving by a different method e.g. x=-1.58496...)

4.

(í)

Graph shows:

- -Line passing through (0,5).
- -Curve passes through (0,1).

(íí)

As the graphs intersect twice, there will be 2 solutions.

AQA Level 2 Further Mathematics Algebra III

5. (í) $y = a \times b^{\times}$ at x=-1, y=5, so: $5 = a \times b^{-1}$ $5 = \frac{a}{b}$ a = 5 b also, at x=5, y=3645 $3645 = a \times b^5$ $3645 = 5b \times b^5$ $\frac{3645}{5} = b^6$ 729 = b° b=\$√729 b=3 sínce a=5b, a=15 (íí) y=135 where x=c: $y = 15 \times 3^{\times}$ $135 = 15 \times 3^{\circ}$ $\frac{135}{15}=3^{\circ}$ 9=3° c = 2 6. (í) $P(t) = 40000 \times (1.2)^{t}$ (íí) $P(5) = 40000 \times (1.2)^5 = 99533$

F.

AQA Level 2 Further Mathematics Algebra III

(ii)
$$P(1345) = 1013 \times 0.88^{(1345/1000)} = 853$$
 millibars

8.

(i)
$$a_{X=0}, N = 100 \times 3^{\left(\frac{0}{24}\right)} = 100 \times 3^{\circ} = 100 \times 1 = 100$$

(íí) After 2 days, 48 hours have passed.

At x=48,
$$N = 100 \times 3^{\left(\frac{48}{24}\right)} = 100 \times 3^{2} = 100 \times 9 = 900$$

(iii) Plot a graph of
$$N = 100 \times 3^{\left(\frac{x}{24}\right)}$$

Reading off the graph at 10 000 gives an answer of approx. 100.

At x=100, N = 100 × 3<sup>$$\left(\frac{100}{24}\right) = 9728$$

At x=101, N = 100 × 3 ^{$\left(\frac{101}{24}\right) = 10183$}</sup>

We would expect it to take 4 days and 5 hours to reach 10 000 bacteria.