AQA Level 2 Further mathematics Algebra IV

Section 6: Sequences and proof

Solutions to Exercise

- If n is odd, n³ and n² are both odd, so n³ n² is even.
 If n is even, n³ and n² are both even, so n³ n² is even.
 Therefore for all positive integers n, n³ n² is always even.
- 2. For three consecutive integers, at least one will be even, and one will be a multiple of 3. Therefore the product of the three integers is both a multiple of 2 and a multiple of 3, and so is a multiple of 6.
- 3. Any odd number can be written as 2n + 1, where n is an integer. So the square of an odd number can be written as $(2n + 1)^2 = 4n^2 + 4n + 1$ = 4n(n + 1) + 1

One of n and n + 1 is even, so n(n + 1) is a multiple of 2 and therefore 4n(n + 1) is a multiple of 8.

So 4n(n+1)+1 is one more than a multiple of 8. So the square of any odd number is always 1 more than a multiple of 8.

- 4. (i) nth term = 3n-1 1^{st} term = $3 \times 1 - 1 = 2$ 2^{nd} term = $3 \times 2 - 1 = 5$ 3^{rd} term = $3 \times 3 - 1 = 8$ 4^{th} term = $3 \times 4 - 1 = 11$ Sequence is 2, 5, 8, 11,
 - (ii) nth term = $n^2 1$ 1^{st} term = $1^2 - 1 = 0$ 2^{nd} term = $2^2 - 1 = 4 - 1 = 3$ 3^{rd} term = $3^2 - 1 = 9 - 1 = 8$ 4^{th} term = $4^2 - 1 = 16 - 1 = 15$ Sequence is 0, 3, 8, 15,
 - (iii) nth term = $3n^2 2n + 1$ 1^{st} term = $3 \times 1^2 - 2 \times 1 + 1 = 3 - 2 + 1 = 2$ 2^{nd} term = $3 \times 2^2 - 2 \times 2 + 1 = 12 - 4 + 1 = 9$ 3^{rd} term = $3 \times 3^2 - 2 \times 3 + 1 = 27 - 6 + 1 = 22$ 4^{th} term = $3 \times 4^2 - 2 \times 4 + 1 = 48 - 8 + 1 = 41$ Sequence is 2, 9, 22, 41,

AQA L2 FM Algebra IV 6 Exercise solutions

- 5. (i) Each term increases by 3, so the general term must involve 3n. nth term = 3n - 1.
 - (ii) Each term decreases by 2, so the general term must involve -2n. nth term = 12 - 2n
- 6. (i) The sequence has nth term an 2 + bn + c.

Terms 3 9 17 27 39 Differences 6 8 10 12 Second differences 2 2 2 So
$$a = 1$$

Terms 3 9 17 27 39
$$an^2$$
 1 4 9 16 25 $bn+c$ 2 5 8 11 14

The values of bn + c go up by 3 each time, so b = 3, and c = -1

The nth term of the sequence is $n^2 + 3n - 1$.

(ii) The sequence has nth term $an^2 + bn + c$.

Terms -2 4 14 28 46 Differences 6 10 14 18 Second differences 4 4 4 So
$$a = 2$$

The values of bn + c are all the same, so b = 0, and c = -4

The nth term of the sequence is $2n^2 - 4$.

(iii) The sequence has nth term an 2 + bn + c.

Terms
$$\mathcal{F}$$
 12 15 16 15 Differences 5 3 1 -1 Second differences -2 -2 -2 So $a = -1$

Terms
$$7$$
 12 15 16 15
an² -1 -4 -9 -16 -25
bn + c 8 16 24 32 40

The values of bn + c go up by 8 each time, so b = 8, and c = 0

AQA L2 FM Algebra IV 6 Exercise solutions

The nth term of the sequence is $-n^2 + 8n$.

7. (i) nth term =
$$\frac{2n+5}{4n-1}$$

1st term = $\frac{2\times1+5}{4\times1-1} = \frac{2+5}{4-1} = \frac{7}{3}$
5th term = $\frac{2\times5+5}{4\times5-1} = \frac{10+5}{20-1} = \frac{15}{19}$
100th term = $\frac{2\times100+5}{4\times100-1} = \frac{200+5}{400-1} = \frac{205}{399}$

As
$$n \to \infty$$
, $2n+5 \to 2n$, $4n-1 \to 4n$
so $\frac{2n+5}{4n-1} \to \frac{2n}{4n} = \frac{1}{2}$

The limit of the sequence is $\frac{1}{2}$.

(ii) nth term =
$$\frac{1-6n}{2n+3}$$

 1^{st} term = $\frac{1-6\times 1}{2\times 1+3} = \frac{1-6}{2+3} = -\frac{5}{5} = -1$
 5^{th} term = $\frac{1-6\times 5}{2\times 5+3} = \frac{1-30}{10+3} = -\frac{29}{13}$
 100^{th} term = $\frac{1-6\times 100}{2\times 100+3} = \frac{1-600}{200+3} = -\frac{599}{203}$
As $n\to\infty$, $1-6n\to -6n$, $2n+3\to 2n$
so $\frac{1-6n}{2n+3} \to \frac{-6n}{2n} = -3$

$$n^{2} + 2n - 5 = 1000$$

$$n^{2} + 2n = 1005$$

$$n^{2} + 2n + 1 = 1006$$

$$(n+1)^{2} = 1006$$

n+1 is a whole number but 1006 is not a square number so 1000 cannot be a term in the sequence.

Method 2

AQA L2 FM Algebra IV 6 Exercise solutions

$$n^2 + 2n - 5 = 1000$$

$$n^2 + 2n = 1005$$

$$n(n+2) = 1005$$

n and n+2 are consecutive even or consecutive odd numbers. To multiply to make 1005, they must both be odd.

$$1005 = 3 \times 5 \times 67$$

There are no consecutive odd numbers that multiply to make 1005 so 1000 cannot be a term in the sequence.

Method 3

$$n^2 + 2n - 5 = 1000$$

$$n^2 + 2n - 1005 = 0$$

Solve the quadratic equation.

$$n = 30.72 \text{ or } -32.72$$

n is not an integer so 1000 is not a term in the sequence.

- 9. (a) One possible sequence is $\frac{3n}{n+1}$
 - (b) One possible sequence is $4 \frac{n}{n+1}$