A Level Further Statistics 1 Mock Paper Set 1 (9FM0/3B)

Mark Scheme

Question	Scheme	Marks	AOs
1 (a)	H₀; recycling plastics and the distance to the nearest recycling point are independentH₁; recycling plastics and the distance to the nearest recycling point are not independent	B1	1.2
	Degrees of freedom, $\nu = (3 - 1) \times (2 - 1) = 2$ Therefore critical value = $\chi^2(0.05) = 5.991$	B1	3.1b
	Test statistic = $\sum \frac{(O_i - E_i)^2}{E_i} = \frac{(64 - 58.3)^2}{58.3} + \frac{(42 - 47.7)^2}{47.7} + \frac{(32 - 29.7)^2}{29.7} + \dots =$	M1	1.1b
	8.0988 = awrt 8.10	A1	1.1b
	In critical region, therefore sufficient evidence to reject H_0 . Data does not support Barbara's belief at the 5% significance level that people recycling plastics is independent of the distance to the nearest recycling point.	A1	3.2a
			(5)
(b)	 Test statistic is halved and Critical value stays the same 	B1	2.4
	This is not in the critical region and therefore Barbara's original conclusions are not valid, data suggests independence.	dB1	2.3
			(2)
			(7)

Notes

a)

 $1^{st}\,B1$ accept 'no association between ...' & 'association between...' in H_0 and H_1 oe but must mention context

 2^{nd} B1 must have ($\nu = 2$) awrt 5.99 for critical value (implies correct degrees of freedom) M1 need to see at least 2 terms if A1 not awarded 1^{st} A1 awrt 8.10 (accept p = awrt 0.0174) 2^{nd} A1 cso must have correct comment in context.

b)

 1^{st} B1 valid reason why test statistic is halved 2^{nd} B1 dependent on 1^{st} B1 cao

A Level Further Statistics	Mock Paper Set 1	(9FM0/3B)
----------------------------	------------------	-----------

Mark Scheme

Question	Scheme	Marks	AOs
2 (a)	$P(X = 4) = \frac{7}{10} \times \frac{6}{9} \times \frac{5}{8}$	M1	2.1
	$=\frac{210}{720}$ $=\frac{7}{24}$ *	A1*	1.1b
			(2)
(b)	$E(X) = 1 \times \frac{3}{10} + 2 \times \frac{7}{30} + 3 \times \frac{7}{40} + 4 \times \frac{7}{24} =$	M1	3.1b
	$\frac{59}{24} = 2.458\dot{3}$ E(X ²) = 1 ² × $\frac{3}{10}$ + 2 ² × $\frac{7}{30}$ + 3 ² × $\frac{7}{40}$ + 4 ² × $\frac{7}{24}$ =		
	$\frac{299}{40} = 7.475$	A1	1.1b
	$Var(X) = \frac{299}{40} - \left(\frac{59}{24}\right)^2 = 1.43159$ awrt 1.43	M1 A1	1.1b 1.1b
			(4)
(c)	Let $\operatorname{rv} T =$ number of tokens drawn $T \sim \operatorname{Geo}(0.3)$	B1	3.3
	Y = T - 1	B1	3.1b
	Var(Y) = Var(T)	M1	3.4
	Var(Y) = $\frac{1-p}{p^2} = \frac{0.7}{0.3^2} = \frac{70}{9} = 7.7$	A1	1.1b
			(4)
			(10)

Notes
7 6
a) M1 need $\overline{10} \times \overline{9} \times \overline{9}$ either using P(GGG), or P(GGGR or GGGG)
A1 * full correct solution
b) 1^{st} M1 correct method for E(X) or E(X²)
1^{st} A1 both E(X) and E(X²) correct
2^{nd} M1 full method for Var(X) involving attempt at E(X) and E(X ²) or E((X - μ) ²)
2 nd A1 awrt 1.43
Correct answer with no working scores 1/4
c) 1 st B1 use of Geometric distribution for number of tokens drawn
2^{nd} B1 Establishing link between Y and T
1^{st} M1 same variance for Y and T
A1 awrt 7.78
Correct answer with no working scores 2/4

A Level Further Statistics 1 Mock Paper Set 1 (9FM0/3B) Mark Scheme

Question	Scheme	Marks	AOs
3 (a)(i)	$P(X = 9) = 0.11237 \dots$ awrt 0.112	B1	1.1b
(ii)	$\mathbf{P}(X \ge 9) = 1 - \mathbf{P}(X \le 8)$	M1	1.1b
	= 1 – 0.250228 = 0.749771 awrt 0.750	A1	1.1b
			(3)
(b)	Select $X \sim Po(6)$ and $H_0: \lambda = 6$ and $H_1: \lambda > 6$	M1	3.3
	$[\mathbf{P}(X \le 10) = 0.957379 \dots] \therefore \mathbf{P}(X \ge 11) = 0.04262 \dots$	M1	3.4
	$X \ge 11$ is critical region	A1	1.1b
	Power of test = $P(Y \ge 11 \lambda = 10) = 1 - P(Y \le 10 \lambda = 10) =$	dM1 A1ft	3.1b 1.1b
	1 – 0.583039 = 0.41696 awrt 0.417	A1	1.1b
			(6)
(c)	Test is only valid if the teacher can assume that Charlie looks at his mobile phone independently each time, or at a constant rate, or randomly (any one of these)	B1	3.5b
			(1)
			(10)

Notes
a) (i) B1 calculator value awrt 0.112
(ii) M1 1 – P($X \le 8$) of seen or implied
A1 awrt 0.750 (condone 0.75)
b) 1 st M1 X~Po(6) seen and correct hypotheses (allow μ for λ or $\lambda = 3$ and $\lambda > 3$)
2 nd M1 attempt to find critical region using Po(6), upper tail only
A1 $X \ge 11$ as critical region seen or implied
3 rd M1 complete strategy to find power of test, dependent on 2 nd M mark
2^{nd} A1ft on their critical region (must be using Po(10))
3 rd A1 awrt 0.417
c) B1 cao must mention context

A Level Further Statistics 1 Mock Paper Set 1 (9FM0/3B) Mark Scheme

Question	Scheme						Marks	AOs		
4 (a)	H ₀ : Geo(1/3) is a suitable model for the number of rolls to 1^{st} 5 or 6							B1	2.5	
	H₁: Geo(1/3) is not a suitable model for the number of rolls to $1^{st} 5$ or 6									
	Assuming H ₀ is	true , expe	ected val	ues are	$\mathbf{E}_i =$	$100 \times \frac{1}{3}$	$\times \left(\frac{2}{3}\right)^{i-1}$		M1	3.4
	Number of rolls to 1st 5 or 6Expected33 frequency	1 2 .3 22.2	2 14.	3 8	4	1 5 6 7 6.58 4.38		7 or more 8.77	A1 A1	1.1b 1.1b
	Number of rolls to $1^{st} 5$ 123456 or moreor 60171710214									
	frequency Expected frequency Combining last t	frequency 17 17 16 5 14 frequency 33.3 22.2 14.8 9.87 6.58 13.1 frequency Solution Solution Solution Solution Solution Solution Solution Combining last two groups Solution Solutio							M1	2.1
	v = 6 - 1 = 5								B1ft	1.1b
	Critical value, $\chi^2(0.05) = 11.070$								B1ft	1.1a
	Test statistic = $\frac{(39 - 33.3)^2}{33.3} + \frac{(17 - 22.2)^2}{22.2} + \frac{(17 - 14.8)^2}{14.8} + \cdots$								M1	1.1b
	= 4.5181 awr	t 4.5							A1	1.1b
	Not in critical region, insufficient evidence to reject H_0 , no significant evidence at the 5% level that the die is biased.							A1cso	3.5a	
										(10)
(b)(i)	e.g. Mai's test measures results against the frequencies of all six possible scores, whereas Desmond's doesn't.							B1	3.5b	
	Mai's test needs a fixed number of rolls, whereas number of rolls for Desmond's test is unknown.							B1	3.5b	
(ii)	Desmond's test is likely to collect more data.								B1	3.5b
										(3)
										(13)

Notes a)

 $1^{\text{st}} B1 H_0/H_1$ must include correct value of parameter.

1st M1 use of geometric distribution (may be implied)

1st A1 at least 3 values correct to 1dp

 2^{nd} A1 all correct to 1 dp (allow last 2 groups already combined)

2nd M1 combining last two groups only

2nd B1 ft if not combined groups

 3^{rd} B1 ft their \mathbf{v}

 3^{rd} M1 at least 2 terms shown (give if test value correct and no working shown) 3^{rd} A1 awrt 4.5 4^{th} A1 cso

b) (i) B1 valid comment on limitation of Desmond's test compared to Mai's

B1 valid comment on number of rolls of die expected compared to Mai's

(ii) B1 valid comment on amount of data collected.

Question	Scheme	Marks	AOs
5 (a)(i)	X~B(1000, 0.005)	B1cao	3.3
(ii)	$P(X \ge 10) = 1 - P(X \le 9) = 1 - 0.96853476$	M1	2.1
	= 0.03146523		
	Approximation $Y \sim P_0(5)$ $P(Y \ge 10) = 1 - P(Y \le 9) = 1 - 0.9681719435$	M1	3.3
	=0.0318280564	A1	1.1b
	Percentage error $= \frac{0.031828056 - 0.03146523}{0.03146523} \times 100$	M1	1.1b
	=1.1530 awrt 1.15%	A1	1.1b
			(6)
(b)	Size of Ushma's test = $1 - P(X \le 8) = 1 - 0.932397 \dots$	M1	2.1
	= 0.067602	A1	1.1b
	[Size of test = P(Type I error)] Size of Ushma's test < Size of Javed's test (0.08)	B1	2.4
	So implies Ushma's test is better	dB1ft	2.2b
			(4)
			(10)

Notes

a)(i) B1 cao must include correct parameters

(ii)1st M1 attempting $P(X \ge 10)$ using a Binomial distribution

 2^{nd} M1 attempting **P(Y** \ge **10)** using Po(5)

1st A1 both correct to 3 sfs (awrt 0.0315 and 0.0318 respectively)

3rd M1 correct method for percentage error using their probabilities from Bin and Poisson distributions

 2^{nd} A1 accept awrt 1.14 – 1.16% with working seen (do not accept 0.0115)

b) M1 attempt at $P(X \ge 9)$ using X~B(1000, 0.005) or X~Po(5)

A1 awrt 0.0676 (or 0.0681 if using X~"Po" (5))

1st B1 valid argument implying smaller size of test is preferable

2nd B1 dependent on 1st B1 ft their size of Ushma's test.

A Level Further Statistics 1 Mock Paper Set 1 (9FM0/3B)

Question	Scheme	Marks	AOs
6 (a)(i)	Use of negative binomial with $r = 3$ and $p = 0.2$	B1	3.3
	$\mu = \frac{r}{p} = \frac{3}{0.2}$	M1	3.4
	= 15	A1	1.1b
			(3)
(ii)	Success of each throw is independent of all previous throws (oe)	B1	2.4
	Probability of hitting the bullseye on each throw remains the same (oe)	B1	2.4
			(2)
(b)	Variance of number of throws required, $\sigma^2 = \frac{r(1-p)}{p^2} = \frac{3 \times 0.8}{0.2^2} = 60$	B1	1.1b
	\overline{v} v $\left(c = 60 \right)$	M1	3.1b
	By CLT need to use $X \sim N\left(\frac{15}{100}\right)$	A1	1.1b
	$P(\overline{X} > 16)$	dM1	3.4
	= 0.09835 awrt 0.0984	A1	1.1b
			(5)
			(10)

 Notes

 a)(i) B1 needs correct distribution and correct parameters

 (ii) 2xB1 must be valid comments in context.

 b) 1st M1 use of Normal distribution with their μ and σ^2

 1st A1 must be correct values

 $\overline{X} \sim N\left(15, \frac{60}{100}\right)$

 2nd M1 dependent on use of

 2nd A1 awrt 0.0984

A Level Further Statistics 1 Mock Paper Set 1 (9FM0/3B) Mark Scheme

Question	Scheme	Marks	AOs
7 (a)	$\mathbf{G}_X'(t) = \lambda \mathbf{e}^{\lambda(t-1)}$	M1	2.1
		A1	1.1b
	$G_X(1) = \lambda e^{o} = \lambda *$	A1*cso	1.1b
	, n	N(1	(3)
(D)	Need $G_Y(1) = 1$, so $\left(\frac{1}{a} + b\right) = 1$	MI	3.1a
	$\therefore \frac{1}{a} + b = 1 \qquad \qquad b = 1 - \frac{1}{a} *$	A1*cso	1.1b
			(2)
(c)	$b > 0$, $\therefore 1 - \frac{1}{a} > 0$	M1	3.1a
	a > 1	A1	1.1b
			(2)
(d)	$\left[\mathbf{G}_{Y}(t) = \left(\frac{t^{2}}{a} + b\right)^{4}\right] \therefore \mathbf{G}_{Y}'(t) = \frac{8t}{a} \left(\frac{t^{2}}{a} + b\right)^{3}$	M1	2.1
	$[\mathbf{E}(Y) =]\mathbf{G}'_{Y}(1) = \frac{8}{a} \left(\frac{1}{a} + b\right)^{3} \qquad \left[= \frac{8}{a} \right]$	M1	1.1b
	$G_Y'(t) = \frac{48t^2}{a^2} \left(\frac{t^2}{a} + b\right)^2 + \frac{8}{a} \left(\frac{t^2}{a} + b\right)^3$	M1	2.1
	$E(Y^{2})-E(Y)=G_{Y}^{\prime\prime}(1)=\frac{48}{a^{2}}\left(\frac{1}{a}+b\right)^{2}+\frac{8}{a}\left(\frac{1}{a}+b\right)^{3}$ $\left[=\frac{48}{a^{2}}+\frac{8}{a}\right]$	M1 A1	1.1b 1.1b
	$Var(Y) = G''_{Y}(1) + G'_{Y}(1) - (G'_{Y}(1))^{2}$ $= \frac{48}{2} (\frac{1}{2} + b)^{2} + \frac{8}{2} (\frac{1}{2} + b)^{3} + \frac{8}{2} (\frac{1}{2} + b)^{3} - (\frac{8}{2} (\frac{1}{2} + b)^{3})^{2}$	M1	1.2
	$\frac{1}{a + b - 1} = \frac{48}{a + a} + \frac{8}{a + b} + \frac{8}{a + $	M1	2.1
	Use of $\overline{a}^{+} \overline{b}^{-} 1$ value $\overline{a}^{-} \overline{a^{2}}^{+} \overline{a}^{+} \overline{a}^{-} \overline{a}^{-$	A1*cso	1.15
	$Var(Y) = \frac{10}{a} - \frac{10}{a^2} = \frac{10}{a^2}(a-1)$	A1 050	1.10
			(8)
1		1	(15)

