GCE A Level Further Mathematics (9FM0) – Shadow Paper (Set 1) 9FM0-3B Further Statistics 1

June 2022 Shadow Paper mark scheme

Please note that this mark scheme is not the one used by examiners for making scripts. It is intended more as a guide, indicating where marks are given for correct answers. As such, it may not show follow-through marks (marks that are awarded despite errors being made) or special cases.

It should also be noted that for many questions, there may be alternative methods of finding correct solutions that are not shown here – they will be covered in the formal mark scheme from the original paper.

This document is intended for guidance only and may differ significantly from the examiners' final mark scheme for the original paper, which was published in August 2022.

Guidance on the use of codes within this document

M1 – method mark. This mark is generally given for an appropriate method in the context of the question. This mark is given for showing your working and may be awarded even if working is incorrect.

A1 – accuracy mark. This mark is generally given for a correct answer following correct working.

B1 – working mark. This mark is usually given when working and the answer cannot easily be separated.

Some questions require all working to be shown; in such questions, no marks will be given for an answer with no working (even if it is a correct answer).

Qu	Scheme							Marks	AOs	
1(a)	$r = P(X=0) \times 200$ or $r = P(X=5) \times 200$ or $s = P(X=2) \times 200$						M1	3.4		
	or $s = P(x = 3)$ r = 6.25 ((value ma	ay be in t	able)					A1	1.1b
	$s = \underline{62.5} (va)$	alue may	be in tab	ole)					A1	1.1b
(b)	$H_0: B(5,0.5)$ is a suitable model(o.e.)Condone $B(0.5, 5)$ $H_1: B(5,0.5)$ is not a suitable model(o.e.)							B1	2.5	
	$\boxed{\frac{\left(O_i - E_i\right)^2}{E_i}}$	3.61	2.74	0.1	1.44	4.80	15.21		M1	1.1b
	$\frac{O_i^2}{E_i}$	19.26	15.49	57.6	82.94	11.56	40.96			
	$\sum \frac{(O_i - E_i)^2}{E_i} = 27.9 \text{ or } \sum \frac{O_i^2}{E_i} - N = 227.9 - 200 = 27.9$							A1	1.1b	
	v = 6 - 1 = 5								B1	1.1b
	CV = 11.070								B1ft	1.1b
	Significant so there is evidence that the researcher's model is not suitable						A1	2.2b		
									(6)	
									T	'otal 9

Question	Scheme						Marks	AOs		
2(a)	[E(X) =] 0.1b - 2.05							B1	1.1b	
(b)		(-2) $(-)^{2}$. (.)?	(- 2	-2 -			(1)	
(0)	E(X	$(-7)^2 \times 0.4$	$+(-2)^{2}$	×0.15 (-	$+0^2 \times 0.2$	$+7^{2} \times 0.$	$15 + 0.1b^2$		M1	1 11
	$(=2^{2})$	$(=27.55+0.1b^2)$							1011	1.10
) 55 · 0 11 ² " ("(11 20	$(51)^2$	12 0076	-)			N/1	2.1
	27.	$55+0.1b^{-1}-(10)$	0.1b - 2.0	(=	=43.88/3)			MI	3.1a
	0.09	$b^2 + 0.41b - 20.$	54(=0)						M1	1.1b
	b = 13 [since $b > 7$]							A1	2.2a	
									(4)	
(c)		X	-7	-2	0	7	"13"			
		X^2	49	4	0	49	169			21
		4-5X	39	14	4	-31	-61		M1	
	-	$X^2 - 4$	45	0	-4	45	165		Alft	1.1b
		-5X	35	10	0	-35	-65		11110	
	-	$\frac{X^2 + 5X}{X^2 + 2X}$	14	-6	0	84	234			
	L	$X^2 + 3X - 4$	10	-10	-4	80	230			
	P(X)	$r^2 < 4 - 5X \Big) = P($	(X=-2)	+P(X=0)	D)				M1	2.2a
	= <u>0.35</u>						A1	1.1b		
								(4)		
								Т	otal 9	

Qu	Scheme	Marks	AOs
3 (a)	$W \sim Po(15.6)$ and $P(W \ge 21) = 1 - P(W \le 20)$ or suitable 3sf probs	M1	3.4
	$P(W \ge 21) = 0.110589$ awrt <u>0.111</u>	A1	1.1b
		(2)	
(b)	$[S = \# \text{ calls per day}, S \sim Po(0.6)] P(S > 2) = 0.023115 \text{ awrt}$	B1	1.1b
	<i>X</i> ~B(200, "0.023115")	M1	3.3
	$Y \sim Po($ "4.623") suitable 3sf probs	M1	3.4
	= 0.02012116 awrt <u>0.0201</u>	A1	1.1b
		(4)	
(c)	$H_0: \lambda = 21 H_1: \lambda < 21$	B1	2.5
	$U \sim \text{Po}(21)$	B1	3.3
	$P(U \le 11) = 0.01290476$	M1	1.1b
	[0.013 < 0.05 or there is sufficient evidence to reject H ₀]		
	There is sufficient evidence at the 5% level of significance that the	A1	2.2b
	number of calls received per day is lower in winter		
	or <u>rate of calls</u> is <u>lower</u> in winter or <u>less calls per day</u> in <u>winter (o.e.)</u>	(4)	
(d)	$C \sim \text{Po}(0.6 \times n + 0.3 \times n) [= \text{Po}(0.9n)]$ or $D \sim B(n, e^{-0.9} \text{ or awrt} 0.407)$	M1	3.1b
	$e^{-0.9} < 0.002 \text{ or } -0.9n < \ln(0.002) \text{ or } n > 6.9$	M1	1.1b
	$n = \underline{7}$	A1	1.1b
		(3)	
(e)	The <u>rate of calls</u> per day is <u>constant</u> or the <u>number of calls</u> occurring in	B1	2.4
	non-overlapping time <u>intervals</u> is <u>independent</u> . or <u>number of calls per</u> <u>day is independent</u> (o.e.)	(1)	
		Τα	tal 14

Question	Scheme	Marks	AOs
4(a) (i)	$[W \sim \text{Geo}(0.22)]$ $P(W = 5) = 0.78^5 \times 0.22$	M1	3.3
	= awrt <u>0.081433</u>	A1	1.1b
	0.001+55	(2)	
(ii)	$P(W \le 4) = 1 - 0.78^4 = 0.629849$	M1	3.1b
	awrt <u>0.630</u>	A1	1.1b
		(2)	
(iii)	$X \sim B(5, 0.22)$	M1	3.3
	P(X=3) = 0.0647824 awrt <u>0.0648</u>	A1	1.1b
		(2)	
(iv)	$[Y \sim NB(3, 0.22)]$ using a neg bin	M1	3.3
	$P(Y \le 5) = P(Y = 3) + P(Y = 4) + P(Y = 5)$	M1	3.1b
	$= 0.22^{3} + \binom{3}{2} \times 0.22^{3} \times 0.78 + \binom{4}{2} \times 0.22^{3} \times 0.78^{2}$	M1	3.4
	= 0.07443377 awrt <u>0.0744</u>	A1	1.1b
		(4)	
(b)	P(Zac wins)	M1	3.1b
	$=\frac{0.78\times0.22}{1-0.78^2} \text{ oe}$	M1	1.1b
	= 0.4382= 0.438*	Alcso*	2.1
		(3)	
		То	otal 13

Question	Scheme	Marks	AOs
5	Geo (0.4) $\mu = \frac{1}{0.4}$ [or exact equivalent]	B1	1.1b
	$\sigma^2 = \frac{1 - 0.4}{0.4^2}$ [or exact equivalent]	B1	1.1b
	$\operatorname{CLT} \Rightarrow \overline{X} \approx \operatorname{N}\left(\frac{10}{4},\ldots\right)$ oe	M1	2.1
	$\Rightarrow \overline{X} \approx N\left(\frac{10}{4}, \frac{3}{200}\right) \text{ and attempt (sight of) } P\left(\overline{X} < 2.65\right)$	M1	3.4
	= 0.88966 awrt <u>0.890</u>	A1	1.1b
		(5)	
		Т	'otal 5

Question	Scheme	Marks	AOs
6(a)	$G_{V}(t) = \frac{36}{121}t^{4} + \frac{60}{121}t^{5} + \frac{25}{121}t^{6} \text{or} G_{V}(t) = t^{4}\left(\frac{36}{121} + \frac{60}{121}t + \frac{25}{121}t^{2}\right)$	M1	1.1b
	$G_{V}(t) = t^{4} \left(\frac{5}{11}t + \frac{6}{11}\right)^{2} *$	A1* cso	2.1
		(2)	
(b)(i)	$G_W'(t) = 5t \left(\frac{5}{11}t + \frac{6}{11}\right)^{10} + \left(\frac{5}{11}t + \frac{6}{11}\right)^{11}$	M1	2.1
	$\left[\mathbf{G}_{W}^{\prime}(1) = \right] \mathbf{\underline{6}}$	A1	1.1b
(ii)	$G_W"(t) = 5\left(\frac{5}{11}t + \frac{6}{11}\right)^{10} + \frac{250}{11}t\left(\frac{5}{11}t + \frac{6}{11}\right)^9 + 5\left(\frac{5}{11}t + \frac{6}{11}\right)^{10} \text{ oe}$	M1	2.1
	G_W "(1) = $\frac{360}{11}$	A1	1.1b
	$\operatorname{Var}(W) = "\frac{360}{11}" + "6" - ("6")^2$	M1	2.1
	$=\frac{30}{11}$	A1	1.1b
		(6)	
(c)	$G_X(t) = t^4 \left(\frac{5}{11}t + \frac{6}{11}\right)^2 \times t \left(\frac{5}{11}t + \frac{6}{11}\right)^{11}$	M1	3.1a
	$=t^{5}\left(\frac{5}{11}t+\frac{6}{11}\right)^{13}$	A1	1.1b
		(2)	
(d)	$G_{Y}(t) = t^{5} \times \left(t^{4}\right)^{5} \times \left(\frac{5}{11}t^{4} + \frac{6}{11}\right)^{13}$	M1	3.1a
	$=t^{25}\left(\frac{5}{11}t^4+\frac{6}{11}\right)^{13}$	A1	1.1b
		(2)	
(e)	$P(Y = 33) \text{ is coefficient of } t^{53} \text{ ie}$ $t^{33} \text{ ie} \dots + t^{25} \times {}^{13}C_2 \left(\frac{5}{11}t^4\right)^2 \left(\frac{6}{11}\right)^{11} + \dots$ or $P(X = 7)$ need coefficient of t^7 ie $\dots + t^5 \times {}^{13}C_2 \left(\frac{5}{11}t^2\right)^2 \left(\frac{6}{11}t^3\right)^{11} + \dots$	M1	1.1b
	$\frac{1}{P(Y=33) = 1.0.0204924}$	Λ 1	1 11
	[1(1-33)-] 0.020+92+	(2)	1.10
	1	(14 n	narks)

June 2022 Shadow Papers: 9FM0 3B Further Statistics 1 – Set 1 – Mark Scheme (Version 2.0) This document is intended for guidance only and may differ significantly from the original paper final mark scheme published in August 2022 © Pearson Education Ltd.

Question	Scheme	Marks	Aos
7(a)	$\overline{X} \sim N(900, 80)$ (May be implied by correct prob or z value seen)	M1	3.3
	$P(\overline{X} > 920) = 0.01267365 0.01267365 \text{ or } z = 8.944$	A1	3.4
	0.01267365 < 0.05 or $z = 2.236067 > 1.6449$ therefore reject H ₀ .	M1	1.1b
	There is evidence that the <u>mean weight</u> of the <u>flour</u> in a bag is <u>not 900</u> g or evidence of a <u>change</u> in <u>mean weight</u> of <u>flour</u> in a bag	Al cso (4)	2.2b
(b)	$\left[\overline{Y} \sim N\left(900, \frac{1600}{n}\right) \Rightarrow\right] \frac{c - 900}{\left(\frac{40}{\sqrt{n}}\right)} = 1.2816$	M1	3.4
	$c = 900 + \frac{51.264}{\sqrt{n}}$	A1 (2)	1.1b
(c)	$900 + \frac{51.264}{2} - 920$	()	
	$\frac{\sqrt{n}}{\frac{40}{\sqrt{n}}} = -3.0902$	M1 A1ft	3.4 1.1b
	$174.872 = 40\sqrt{n}$	dM1	1.1b
	$n = \frac{76}{225}$	A1	2.1
	c = 905.86	(5)	1.1b
		(11 n	narks)

June 2022 Shadow Papers: 9FM0 3B Further Statistics 1 – Set 1 – Mark Scheme (Version 2.0) This document is intended for guidance only and may differ significantly from the original paper final mark scheme published in August 2022 © Pearson Education Ltd.